First slide
Binomial theorem for positive integral Index
Question

Let  n be the smallest positive integer such that the coefficients  x2 in the expansion (1+x)2+(1+x)3++(1+x)49+(1+mx)50  is  (3n+1)51C3 for some positive integer n. Then the value of n , is 

Moderate
Solution

We find that  

(1+x)2+(1+x)3+(1+1)40+(1+mx)50=(1+x)2(1+x)481(1+x)1+(1+mx)30=1x(1+x)50(1+x)2+(1+mx)30

 Coeffi. of x2 in (1+x)2+(1+x)3+(1+x)49+(1+mx)50

= Coeffi. of x2 in 1x(1+x)30(1+x)2+(1+mx)50

= Coeffi. of x3 in (1+x)50(1+x)2+ coefficient of x2 in (1+mx)50

=50C3+51C2m2

It is given that this coefficient is (3n+1)51C3 

 50C3+50C2m2=(3n+1)51C3 50×49×483×2×1+50×492×1m2=(3n+1)51×50×493×2×1 16+m2=17(3n+1) m2=51n+1

The least value of n for which  51n+1 is a perfect square is 5 and for this value of  n the value of  m is 16. Hence,

 m=16 and  n =5. 

Get Instant Solutions
When in doubt download our app. Now available Google Play Store- Doubts App
Download Now
Doubts App