Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  n be the smallest positive integer such that the coefficients  x2 in the expansion (1+x)2+(1+x)3+…+(1+x)49+(1+mx)50  is  (3n+1)51C3 for some positive integer n. Then the value of n , is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

16

b

5

c

21

d

11

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

We find that  (1+x)2+(1+x)3+…(1+1)40+(1+mx)50=(1+x)2(1+x)48−1(1+x)−1+(1+mx)30=1x(1+x)50−(1+x)2+(1+mx)30∴ Coeffi. of x2 in (1+x)2+(1+x)3+…(1+x)49+(1+mx)50= Coeffi. of x2 in 1x(1+x)30−(1+x)2+(1+mx)50= Coeffi. of x3 in (1+x)50−(1+x)2+ coefficient of x2 in (1+mx)50=50C3+51C2m2It is given that this coefficient is (3n+1)51C3 ∴ 50C3+50C2m2=(3n+1)51C3⇒ 50×49×483×2×1+50×492×1m2=(3n+1)51×50×493×2×1⇒ 16+m2=17(3n+1)⇒ m2=51n+1The least value of n for which  51n+1 is a perfect square is 5 and for this value of  n the value of  m is 16. Hence, m=16 and  n =5.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon