Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A line is drawn through a fixed point P (α, β) to cut the circle  x2+y2=r2  at A and  B .Then PA⋅PB is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

(α+β)2−r2

b

α2+β2−r2

c

(α−β)2+r2

d

none of these

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The equation of any line throughP (α, β) is x−αcos⁡θ=y−βsin⁡θ=k(say)Any point on this line is  (α+ k cos θ, β + k sinθ). This point lies on the given circle if(α+kcos⁡θ)2+(β+ksin⁡θ)2=r2⇒k2+2k(αcos⁡θ+βsin⁡θ)+α2+β2−r2=0             (i)This equation, being quadratic in k, gives two values of k and hence the distances of two points A and B on the circle from the point P. Let PA=k1,PB=k2, where k1,k2 are the roots of equation (i)Then,  PAPB =k1k2=α2+β2−r2ALITER  PAPB is the power of the point P(α,β) ) with respect to the circle x2+y2=r2 . Therefore , PAPB=α2+β2−r2
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring