Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A line is drawn through a fixed point P (α, β) to cut the circle  x2+y2=r2  at A and  B .Then PA⋅PB is equal to

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

(α+β)2−r2

b

α2+β2−r2

c

(α−β)2+r2

d

none of these

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The equation of any line throughP (α, β) is x−αcos⁡θ=y−βsin⁡θ=k(say)Any point on this line is  (α+ k cos θ, β + k sinθ). This point lies on the given circle if(α+kcos⁡θ)2+(β+ksin⁡θ)2=r2⇒k2+2k(αcos⁡θ+βsin⁡θ)+α2+β2−r2=0             (i)This equation, being quadratic in k, gives two values of k and hence the distances of two points A and B on the circle from the point P. Let PA=k1,PB=k2, where k1,k2 are the roots of equation (i)Then,  PAPB =k1k2=α2+β2−r2ALITER  PAPB is the power of the point P(α,β) ) with respect to the circle x2+y2=r2 . Therefore , PAPB=α2+β2−r2
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon