Search for: MathematicsLet f:R→R be a positive increasing function with limx→∞ f(3x)f(x)=1 . Then limx→∞ f(2x)f(x)=Let f:R→R be a positive increasing function with limx→∞ f(3x)f(x)=1 . Then limx→∞ f(2x)f(x)=A1Bx/3C3/2D3 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution: we have x<2x<3x ⇒f(x)<f(2x)<f(3x) ⇒1<f(2x)f(x)<f(3x)f(x)limx→∞ 1<limx→∞ f(2x)f(x)<limx→∞ f(3x)f(x)=1 ∴limx→∞ f(2x)f(x)=1Post navigationPrevious: Ltn→∞{x}+{2x}….+{nx}n2Next: limx→0x81x3=where [X] is greatest integer functionRelated content Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics