Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

[[1]] is the equation of the circle of minimum radius which contains the three circles.


S1x2+y2-4y-5=0


S2x2+y2+12x+4y+31=0


S3x2+y2+6x+12y+36=0.


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The general form of the equation of the circle    x2+y2+2gx+2fy+c=0  , where the center of the circle is   (−g,−f), and the radius is  g2+f2-c
⇒For the equation  S1x2+y2-4y-5=0
 of the circle, we get to the center, C1=(0,2)  radius  r1=3
 For the equation  S2x2+y2+12x+4y+31=0 of the circle, we get to the center, C2=(-6,-2)  and radius r2=3
 For the equation  S3x2+y2+6x+12y+36=0 of the circle, we get to the center, C3=(−3,−6)  and radius  r3=3
From the given three circle equations we can observe circles have the same radius r=3
https://www.vedantu.com/question-sets/3e2551f7-b86f-4664-a757-528a983d73bc1322825200154810491.pngIn the above diagram, the radius of the circle touches all the circles represented by:
 CP=CC1+C1P=CC1+3=CC2+3=CC3+3
 Let us assume C(h,k)  to be the center of the required circle.
Then, CC1=CC2=CC3  or CC1 2=CC22=CC32
We get the equation as:
h-02+k-22=h+62+k+22=h+32+k+62 Applying, the arithmetic identity, a+b2=a2+2ab+b2  in the equation (i) as:
h2+k2-4k+4=h2+12h+36+k2+4k+4=h2+6h+9+k2+12k+36
h2+k2-4k+4=h2+k2+12h+4k+40=h2+k2+6h+12k+45
-4k+4=12h+4k+40=6h+12k+45
By equating pair of equations we get:
⇒ 6h+16k+41= 0-- (i)
 And  6h−8k−5= 0--(ii)
From equation (i)

⇒6h+16k+41= 0
⇒6h= −16k−41
h=-16k-416----(iii)Substitute the value of h from equation (iii) in equation (ii), we get
⇒6h−8k−5=0
⇒8k=6h−5
8k=6(-16k-416)-5
⇒8k=−16k−46
⇒24k=−46
k=-4624=-2312
Solving for the value of  h we get:
h=-16k-416
6h=-16(-2312)-41
6h=4×233-41
18h=92-123
h=-3118Hence, by solving equation (i) and (ii) we get  h=-3118   and  k=-2312
Now we will find the radius of the required circle by substituting the value of h and k in the equation  CC1=0+h2+2+k2    as:CC1=0+31182+2+23122 =536949
Since, CP=CC1+3=536949+3The radius of the required circle is CP=536949+3
Hence the required equation of the circle is:
x-h2+y-k2=r2
x+31182+y+23122=539949+32
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring