Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

A block of mass m1 =150kg is at rest on a very long frictionless table, one end of which is terminated in a wall. Another block of mass m2 is placed between the first block and the wall, and set in motion towards m1 with constant speed u2 . Assuming that all collisions are completely elastic, find the value of m2 for which both blocks move with the same velocity after m2 has collided once with m1 and once with the wall. (The wall has
effectively infinite mass.)

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 50.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

After the collision, let us consider

v1 = speed of mass m1 towards left
v2 = speed of mass m2 towards right

From conservation of momentum, we have

0 + m2u2 = m1v1 - m2v2                (1)

The mass m2 rebounds elastically from the wall and its velocity gets reversed after the collision with the wall. According to the problem, the mass m2 has the same speed as that of mass m1 after its collision with the wall, that is, v2 = v1 .
Equation (1) becomes

m2u2 = m1 - m2v1                 (2)

Since the collision is elastic, then

12m2u22 = 12m1v12 + 12m2V12  v1 = v2 m2u22 = m1 + m2v12                       3From Eq. (2), we get

v1 = m2u2m1 - m2

Substituting this value of v1 in Eq. (3), we get

m2u22 = m1 + m2m2u22m1 - m22 m1 - m2 = m1 + m2m2 m12 + m22 - 2m1m2 = m1m2 + m22 m12 = 3m1m2 m1 = m13 = 1503 = 50kg

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon