Q.

A car of mass 'm' moves on a banked road having radius 'r' and banking angle θ. To avoid slipping from banked road, the maximum permissible speed of the car is v0. The coefficient of friction μ between the wheels of the car and the banked road is :-

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

μ=v02rgtanθrgv02tanθ

b

μ=v02+rgtanθrgv02tanθ

c

μ=v02+rgtanθrg+v02tanθ

d

μ=v02rgtanθrg+v02tanθ

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Question Image
 

 

Forces Acting on the Car:

When a car moves on a banked road with friction, the forces acting on it are:

  1. Normal reaction (NN): Acts perpendicular to the surface.
  2. Weight (mgmg): Acts vertically downward.
  3. Friction force (ff): Acts parallel to the surface and can be either up or down the incline, depending on whether the car tends to slide outward or inward.

The frictional force can be resolved into:

  • Horizontal componentfcosθf \cos\theta
  • Vertical componentfsinθf \sin\theta

The normal reaction NN can be resolved into:

  • Horizontal componentNsinθN \sin\theta
  • Vertical componentNcosθN \cos\theta

 

Step 1: Vertical Force Balance

Since the car does not move vertically,

Ncosθ+fsinθ=mgN \cos\theta + f \sin\theta = mg

Using f=μNf = \mu N,

Ncosθ+μNsinθ=mgN \cos\theta + \mu N \sin\theta = mg

 N(cosθ+μsinθ)=mgN (\cos\theta + \mu \sin\theta) = mg N=mgcosθ+μsinθN = \frac{mg}{\cos\theta + \mu \sin\theta} 

 

Step 2: Centripetal Force Balance

For circular motion, the net horizontal force provides the necessary centripetal force:

Nsinθfcosθ=mv02rN \sin\theta - f \cos\theta = \frac{m v_0^2}{r}

Substituting f=μNf = \mu N,

NsinθμNcosθ=mv02rN \sin\theta - \mu N \cos\theta = \frac{m v_0^2}{r}

 N(sinθμcosθ)=mv02rN (\sin\theta - \mu \cos\theta) = \frac{m v_0^2}{r}

Using the value of NN from the vertical balance equation:

mgcosθ+μsinθ(sinθμcosθ)=mv02r\frac{mg}{\cos\theta + \mu \sin\theta} (\sin\theta - \mu \cos\theta) = \frac{m v_0^2}{r}

Cancel mm from both sides:

g(sinθμcosθ)cosθ+μsinθ=v02r\frac{g (\sin\theta - \mu \cos\theta)}{\cos\theta + \mu \sin\theta} = \frac{v_0^2}{r}

Rearranging for μ\mu:

μ=tanθv02rg1+v02rgtanθ\mu = \frac{\tan\theta - \frac{v_0^2}{rg}}{1 + \frac{v_0^2}{rg} \tan\theta}

 

Final Answer:

μ=tanθv02rg1+v02rgtanθ\mu = \frac{\tan\theta - \frac{v_0^2}{rg}}{1 + \frac{v_0^2}{rg} \tan\theta}

Magnitude can also be written as μ=v02rgtanθrgv02tanθ

This is the required expression for the coefficient of friction μ\mu to prevent slipping on the banked road.

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon