Q.

A continuously differentiable function y =f(x), x0,πsatisfying y' = 1 + y2,y(0) = 0 = y(π) is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

not possible

b

x (x - π)

c

tan x

d

(x-π)(l-ex )

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 Given the differential equation,
Consider, y'=1+y2,y(0)=0=y(π)
dydx=1+y2dydx, we have.
Then, dy1+y2=dx.
Integrating the equation, we have.

tan-1y=x+c ......111+y2dy=tan-1y
since y(0)=0 are x=0 and y=0  .
tan-1(0)=0+c

0=C
Now, substitute the obtained value of C in 1 
we have,
tan-1y=x+0. tan-1y=x. y=tanx.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
A continuously differentiable function y =f(x), x∈0,πsatisfying y' = 1 + y2,y(0) = 0 = y(π) is