Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

A convex lens made of glass (refractive index = 1.5) has focal length 24 cm in air. When it is totally immersed in water (refractive index = 1.33), its focal length changes to

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

48 cm

b

72 cm

c

24 cm 

d

96 cm

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let's carefully rework the solution.

Step 1: Lens Maker’s Formula

The lens maker’s formula in air is:

1fair=(nlens1)(1R11R2)\frac{1}{f_{\text{air}}} = \left( n_{\text{lens}} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)

For a lens immersed in a medium of refractive index nmediumn_{\text{medium}}, the formula becomes:

1fmedium=(nlensnmedium1)(1R11R2)\frac{1}{f_{\text{medium}}} = \left( \frac{n_{\text{lens}}}{n_{\text{medium}}} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)

Dividing these two equations:

fmediumfair=nlens1nlensnmedium1\frac{f_{\text{medium}}}{f_{\text{air}}} = \frac{n_{\text{lens}} - 1}{\frac{n_{\text{lens}}}{n_{\text{medium}}} - 1}

Step 2: Substituting Values

Given:

  • fair=24f_{\text{air}} = 24 cm,
  • nlens=1.5n_{\text{lens}} = 1.5,
  • nmedium=1.33n_{\text{medium}} = 1.33 (water).

Now, compute:

fwater24=1.511.51.331\frac{f_{\text{water}}}{24} = \frac{1.5 - 1}{\frac{1.5}{1.33} - 1}

 =0.51.51.331= \frac{0.5}{\frac{1.5}{1.33} - 1} =0.51.51.331.33= \frac{0.5}{\frac{1.5 - 1.33}{1.33}} =0.50.171.33= \frac{0.5}{\frac{0.17}{1.33}} =0.5×1.330.17= \frac{0.5 \times 1.33}{0.17} =0.6650.17= \frac{0.665}{0.17} 3.91\approx 3.91

fwater=24×3.91f_{\text{water}} = 24 \times 3.91 =93.8 cm94 cm 

If we use the refractive index of water as nmedium=1.33=4/3

fwater24=1.511.5×341=4

fwater=24×4=96 cm

Final Answer:

So, when the convex lens is immersed in water, its focal length increases to approximately 96 cm. 

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon