Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

A cup of coffee cools from 90°C to 80°C in t minutes when the room temperature is 20°C. The time taken by the similar cup of coffee to cool from 80°C to 60°C at the same room temperature is :

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

513t

b

135t

c

1013t

d

1310t

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Solving using the Average Temperature Method of Newton’s Law of Cooling

Newton’s Law of Cooling states:

dTdt=k(TTroom)\frac{dT}{dt} = -k (T - T_{\text{room}})

where:

TT is the temperature of the object (coffee),

TroomT_{\text{room}} is the ambient room temperature,

kk is a proportionality constant,

tt is time.

Using the average temperature method, we approximate the cooling rate using the average temperature difference from the surroundings:

Rate of coolingAverage excess temperature\text{Rate of cooling} \propto \text{Average excess temperature}

 tΔTAverage temperature excesst \propto \frac{\Delta T}{\text{Average temperature excess}}

where: ΔT=TinitialTfinal\Delta T = T_{\text{initial}} - T_{\text{final}},

Average temperature excess is:

TavgTroom=Tinitial+Tfinal2TroomT_{\text{avg}} - T_{\text{room}} = \frac{T_{\text{initial}} + T_{\text{final}}}{2} - T_{\text{room}}

 

Step 1: Compute Time for Cooling from 90°C to 80°C

Given:

Tinitial=90CT_{\text{initial}} = 90^\circ C,

Tfinal=80CT_{\text{final}} = 80^\circ C,

Troom=20CT_{\text{room}} = 20^\circ C.

The average temperature excess:

Tavg=90+802=85CT_{\text{avg}} = \frac{90 + 80}{2} = 85^\circ C

 TavgTroom=8520=65CT_{\text{avg}} - T_{\text{room}} = 85 - 20 = 65^\circ C

Time taken is proportional to:

t(9080)65=1065t \propto \frac{(90 - 80)}{65} = \frac{10}{65}

Let this time be tt.

Step 2: Compute Time for Cooling from 80°C to 60°C

Given:

Tinitial=80CT_{\text{initial}} = 80^\circ C,

Tfinal=60CT_{\text{final}} = 60^\circ C.

The average temperature excess:

Tavg=80+602=70CT_{\text{avg}} = \frac{80 + 60}{2} = 70^\circ C

 TavgTroom=7020=50CT_{\text{avg}} - T_{\text{room}} = 70 - 20 = 50^\circ C

Time taken is proportional to:

t(8060)50=2050t' \propto \frac{(80 - 60)}{50} = \frac{20}{50}

Step 3: Compute Ratio of Times

tt=20501065\frac{t'}{t} = \frac{\frac{20}{50}}{\frac{10}{65}}=2050×6510= \frac{20}{50} \times \frac{65}{10} =20×6550×10= \frac{20 \times 65}{50 \times 10} =1300500=135

t'=135t 

Final Answer:

The time taken to cool from 80°C to 60°C is 135 times the time taken to cool from 90°C to 80°C.

Thus, t'=135t

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
A cup of coffee cools from 90°C to 80°C in t minutes when the room temperature is 20°C. The time taken by the similar cup of coffee to cool from 80°C to 60°C at the same room temperature is :