Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

A differentiable function f satisfies the relation f(xy) =xf(y)+yf(x) for every x,y in R+.

If f(1)=1, the find the function f(x)

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

-y=x log|x|

b

-x=y log|x|

c

y=x log|x|

d

x=y log|x|

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Put x=1,y=1, then f(1)=0

Now, f(x)(1+h))=xf(1+h)+(1+h)f(x)

f(x+xh)f(x)=xf(1+h)+hf(x) f(x+xh)f(x)=x(f(1+h)f(1))+hf(x) f(xh+x)f(x)xhx limh0f(xh+x)f(x)xhx x(f(1+h)f(1))h+hf(x)hlimh0f(1+h)f(1)hx+f(x)

    xf(x)=xf(1)+f(x)    xf(x)=x+f(x)    xdydx=x+y    dydx=1+yx    dydx+1xy=1

which is a linear differential equation.

 IF=edxx=elogx=1x

Hence, the solution is

yx=dxx+cyx=log|x|+c

when x=1,y=0, then c=0

Thus, the equation of the given curve is

y=xlog|x|

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon