Q.

A differentiable function f satisfies the relation f(xy) =xf(y)+yf(x) for every x,y in R+.

If f(1)=1, the find the function f(x)

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

-y=x log|x|

b

-x=y log|x|

c

y=x log|x|

d

x=y log|x|

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Put x=1,y=1, then f(1)=0

Now, f(x)(1+h))=xf(1+h)+(1+h)f(x)

f(x+xh)f(x)=xf(1+h)+hf(x) f(x+xh)f(x)=x(f(1+h)f(1))+hf(x) f(xh+x)f(x)xhx limh0f(xh+x)f(x)xhx x(f(1+h)f(1))h+hf(x)hlimh0f(1+h)f(1)hx+f(x)

    xf(x)=xf(1)+f(x)    xf(x)=x+f(x)    xdydx=x+y    dydx=1+yx    dydx+1xy=1

which is a linear differential equation.

 IF=edxx=elogx=1x

Hence, the solution is

yx=dxx+cyx=log|x|+c

when x=1,y=0, then c=0

Thus, the equation of the given curve is

y=xlog|x|

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon