Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A function f:RR is defined by f(x)=αx2+6x8α+6x8x2.  Let the number of integral values of α for which f is onto be P. Then the sum of digits of P is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 4.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Since f:RR is an onto mapping.
Range of f = R
 αx2+6x8α+6x8x2 assumes all real value of x.
Let y=αx2+6x8α+6x8x2
Then, y assumes all real values for real values of x. 
 αy+6xy8x2y=αx2+6x8yR x2(α+8y)+6x(1y)(8+αy)=0yR
we know, above equation assumes all real values
 D0 So, 36(1y)2+4(α+8y)(8+αy)0 4912y+y2+8α+α2y+64y+8αy20 918y+9y2+8α+α2y+64y+8αy20 y2(8α+9)+yα2+46+(8α+9)0
we know, if αx2+bx+c>0x then a>0 and D<0
  So, α2+4624(8α+9)(8α+9)0 and (8α+9)>0 α2+462[2(8α+9)(8α+9)]20 and α>9/8 α2+4616α18α2+46+16α+180 and α>9/8α216α+28α2+16α+640 and α>9/8 (α14)(α2)(α+8)20 and α>9/8α[2,14]{8} and α>9/8
Thus, α[2,14]
Hence, f is onto when α[2,14]

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon