Q.

(a) (i) A beam of light of wavelength 600 nm from a distance source falls on a single slit 1 mm wide and a resulting diffraction pattern is observed on a screen 2m away.
What is the distance between the first dark fringes on either side of central bright fringe?
(ii) The width of a slit is 0.012 mm. Monochromatic light is incident on it. The angular position of first bright line is 5.2º. The wavelength of incident light is [sin 5.2º = 0.0906]. (b) In Young’s double slit experiment intensity at a point is (1/4) of the maximum intensity. What is the angular position of this point?
OR
(i) What is the effect on the interference fringes to a Young’s double slit experiment, when (a) the width of the source slit is increased and (b) the monochromatic source is replaced by a source of white light? Justify your answer in each case. (ii) The intensity at the central maxima in Young’s double slit experiment set-up is  Io
Show that the intensity at a point, where the path difference is λ/3 is Io/ 4 .

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

(a) (i)

The distance between the first dark fringe on either side of the central bright fringe =width of central maximum =2a=2×2×600×10-910-3 =2.4×10-3m=2.4 mm

(a)(ii)

It is a one of Fraunhoffer diffraction from single slit. so for bright fringe where a is the width of slit. a sin θ=(2n+1)λ2 λ=2a sin λ2n+1=2×1.2×10-5×0.09062×1+1 =724×10-10 m=7248A.°

(b)

Let P be the point on the central maxima whose intensity is one fourth of the maximum intensity. For interference we know that I=I1+I2+2I1I2cosϕ Where I is the intensity at P and I1, I2 are the intensity of light originating from A and B respectively and ϕ is the phase difference at P.

Question Image

In YDSE, I1=I2=I and Imax=4I We are concentrating at a point where the intensity is one fourth of the max intensity. I=I+I+2I cos ϕ -12 cos ϕ  ϕ=2π3 [P1 note that we take the least value of the angle as the  point is in central maxima] For a phase difference of 2π, the path difference is λ. For phase difference of 2π3, the path difference is λ2π×2π3=λ3 But the path difference (in terms of P and Q) is d sin θ as shown in fig.  d sin θ=λ3  sin θ=λ3d   θ=sin-1λ3d

i) (a) For interference fringes to be seen, s / S λ/ d condition should be satisfied, 

where s = size of the source and d = distance of the source from the plane of two slits.
As, the source slit width increases, fringe pattern gets less and less sharp. When the source slit is too wide, the above condition does not get satisfied and the interference pattern disappears.
(b) The interference pattern due to the different colour components of white light overlap. The central bright fringes for different colours are at the same position. Therefore, central fringe is white. And on the either side of the central fringe (i.e. central maxima),coloured bands will appear. The fringe close to either side of central white fringe is red and the farthest will be blue.

(ii) Given, OP=yn

Question Image

The distance OP equals one-third of fringe width of the pattern. i.e.         yn=β3=13d=3d         dynD=λ3 Path difference =S2P-S1P=dynD=λ3  Phase difference, ϕ=2πλ×path difference                                          =2πλ×λ3=2π3 If intensity at central fringe is I0, then intensity at a point P, where phase difference ϕ, is given by                                I=I0 cos2 ϕ                          I=I0cos2π32                                =I0-cosπ32                               =I0-122=I04 Hence, the intensity at point P would be I04.

 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon