Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A line L:  y=mx+3 meets y-axis at E(0,3) and the arc of the parabola y2=16x,0y6 at the point  F(x0,y0) . The tangent to the parabola at F(x0,y0)  intersect the y-axis at G0,y1. The slope m of the line L is chosen such that the area of the triangle EFG has local maximum.
Match ListI with List II and select the correct answer using the code given below lists:
 

List-I

List-II

(P)m=(1)12
(Q)Maximum area of ΔEFG is(2)4
(R)y0=(3)2
(S)y1=(4)1
  (5)14

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

P4;  Q1;  R2;  S3

b

P3;  Q4;  R5;  S2

c

P1;  Q3;  R2;  S5

d

P1;  Q3;  R4;   S2

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail
Question Image

 Tangent at Fyt=x+4t2 Area of the triangle EFG=A

=1203104t14t28t1=124t2(34t)=2t2(34t)A=6t28t3dAdt=12t23t2d2Adt2=1248t

 Now, dAdt=0 gives, t=0,12

 when t=1/2,d2Adt2<0 Also, the point 4t2,8t=(1,4) satisfies the line y=mx+3

So area is maximum

 Maximum Area =(6/48/8)=1/2 sq unit. 

G=(0,4t)=(0,2)

 Thus, y1=2F=x0,y0=4t2,8t=(1,4),  So, y0=4

 So, 4=m+3m=1

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring