Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

A line through  A(5,4) with slope tanθ  meets the lines x+3y+2=02x+y+4=0xy5=0 at B, C, D respectively, such that  
15AB2+10AC2=6AD2then

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

15AB=cosθ+3sinθ

b

10AC=2cosθ+sinθ

c

6AD=cosθsinθ

d

Slope of  the line is -23

answer is A, B, C, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

A line through  A(5,4) with slope tanθ is x+5cosθ=y+4sinθ=r 
Any point on the line is =(5+rcosθ,4+rsinθ)
If this lies on x+3y+2=0, we have 5+rcosθ+3(4+rsinθ)+2=0

r=15AB=cosθ+3sinθ
similarly, we get, 10AC=2cosθ+sinθ and 6AD=cosθsinθ
From conditions, (cosθ+3sinθ)2+(2cosθ+sinθ)2=(cosθsinθ)2

(2cosθ+3sinθ)2=0

tanθ=23

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
A line through  A(−5,−4) with slope tanθ  meets the lines x+3y+2=0, 2x+y+4=0, x−y−5=0 at B, C, D respectively, such that  15AB2+10AC2=6AD2then