Q.

A non-uniform magnetic  field  exists in  the free space  and  given  as  B=B02x2k^, where   B0  and     are  positive constants.  A  particle  having  positive  charge  ‘q’  and  mass  ‘m’  is  projected  with  speed  ‘ v0’  along positive x-axis from the origin. The maximum distance of the charged particle from the y- axis  before  it  turns  back  due  to  the  magnetic  field is D.  (Ignore  any  interaction  other  than  magnetic field). If  D=(αm2v0qB0)1/β, where  α,  β are positive integers then find the value of  α times  β ?

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 9.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail
Question Image

Since, magnetic filed and velocity are perpendicular, speed of particle will never change. At the moment of turning back, the direction of velocity becomes parallel to y axis.

F=qv×B=q(vxi^+vyj^)×(B02x2k^)F=-(qvxB02x2j^)+(qvyB02x2i^)=-Fyj^+Fxi^​​Fy=qB02x2vx mdvydt=qB02x2dxdt 0v0dvy=qB0m20xmaxx2dxv0=qB0m2  xmax33xmax=(3m2v0qB0)1/3

α=3, β=3

So, α times β=9

 

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
A non-uniform magnetic  field  exists in  the free space  and  given  as  B→=B0ℓ2x2k^, where   B0  and  ℓ   are  positive constants.  A  particle  having  positive  charge  ‘q’  and  mass  ‘m’  is  projected  with  speed  ‘ v0’  along positive x-axis from the origin. The maximum distance of the charged particle from the y- axis  before  it  turns  back  due  to  the  magnetic  field is D.  (Ignore  any  interaction  other  than  magnetic field). If  D=(αmℓ2v0qB0)1/β, where  α,  β are positive integers then find the value of  α times  β ?