Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A normal to the hyperbola 4x29y2=36 meets the coordinate axes x and y at A and B respectively. If the parallelogram OABP (O is origin) is formed, then the locus of P is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

4x29y2=121

b

9x2+4y2=169

c

9x24y2=169

d

4x2+9y2=121

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given hyperbola x29-y24=1 Now equation of normal at P(θ) is 3xsecθ+2ytanθ=13 3x cosθ+2y cotθ=13 It meets coordinate axes at A=133secθ, 0, B=0, 132tanθ and let P(x, y), o=(0, 0) since OABP is parallelogram  then diagonals bisect each other mid point of OB=mid point of AP 0, 134tanθ=133secθ+x2, y2

133secθ+x2=0 x=-133secθ and y2=134tanθ secθ=-3x13         tanθ=4y2x13=2y13 Now sec2θ-tan2θ=1 9x2169-4y2169=1 9x2-4y2=169

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring