Q.

A normal to the hyperbola 4x29y2=36 meets the coordinate axes x and y at A and B respectively. If the parallelogram OABP (O is origin) is formed, then the locus of P is

see full answer

Want to Fund your own JEE / NEET / Foundation preparation ??

Take the SCORE scholarship exam from home and compete for scholarships worth ₹1 crore!*
An Intiative by Sri Chaitanya

a

4x29y2=121

b

4x2+9y2=121

c

9x24y2=169

d

9x2+4y2=169

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given hyperbola x29-y24=1 Now equation of normal at P(θ) is 3xsecθ+2ytanθ=13 3x cosθ+2y cotθ=13 It meets coordinate axes at A=133secθ, 0, B=0, 132tanθ and let P(x, y), o=(0, 0) since OABP is parallelogram  then diagonals bisect each other mid point of OB=mid point of AP 0, 134tanθ=133secθ+x2, y2

133secθ+x2=0 x=-133secθ and y2=134tanθ secθ=-3x13         tanθ=4y2x13=2y13 Now sec2θ-tan2θ=1 9x2169-4y2169=1 9x2-4y2=169

Watch 3-min video & get full concept clarity
AITS_Test_Package
AITS_Test_Package
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

+91
whats app icon