Q.

A normal to the hyperbola 4x29y2=36 meets the coordinate axes x and y at A and B respectively. If the parallelogram OABP (O is origin) is formed, then the locus of P is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

4x29y2=121

b

9x2+4y2=169

c

9x24y2=169

d

4x2+9y2=121

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given hyperbola x29-y24=1 Now equation of normal at P(θ) is 3xsecθ+2ytanθ=13 3x cosθ+2y cotθ=13 It meets coordinate axes at A=133secθ, 0, B=0, 132tanθ and let P(x, y), o=(0, 0) since OABP is parallelogram  then diagonals bisect each other mid point of OB=mid point of AP 0, 134tanθ=133secθ+x2, y2

133secθ+x2=0 x=-133secθ and y2=134tanθ secθ=-3x13         tanθ=4y2x13=2y13 Now sec2θ-tan2θ=1 9x2169-4y2169=1 9x2-4y2=169

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon