Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A normal to the hyperbola x2a2y2b2=1 meets the axes in M and N and the lines MP and NP are drawn perpendiculars to the axes meeting at P. the locus of P is the hyperbola a is.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

a2x2+b2y2=12a2+b22

b

a2x2b2y2=2a2-b22

c

a2x2b2y2=a2+b23

d

a2x2b2y2=a2+b22

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The equation of any normal to the hyperbola

x2a2y2b2=1 is

axcosφ+bycotφ=a2+b2         …(i)

Question Image

Since the normal (i) meets the x-axis at M and y-axis at N respectively. Then,

M=a2+b2acosφ, 0 and N=0, a2+b2btanφ

Let the co-ordinates of the point P be α, β Since PM and PN are perpendiculars to the axes, so the co-ordinates of P are

   a2+b2asecφ, a2+b2btanφ

Therefore,

    α=a2+b2asecφ and β=a2+b2btanφ

  αaa2+b2=secφ and βba2+b2=tanφ

As we know that, 

  sec2φtan2φ=1α2aa2+b22β2ba2+b22=1  α2a2β2b2=a2+b22

Hence, the locus of α, β is

  a2x2b2y2=a2+b22

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring