Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A particle of charge +q and mass m is released from rest in the crossed electric field E and magnetic field  B as shown in Fig. Find the trajectory of the particle.

Question Image

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

5m EqB2

b

3m EqB2

c

m EqB2

d

8m EqB2

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The given electric and magnetic fields can be expressed as
      E=Ej^,  B=Bk^
The electric force is always along the electric field, i.e., y-axis in this case. The magnetic force will be in xy-plane. Thus the particle can never come out of the xy-plane. Let the velocity of particle at any time t be
v=vxi^+vyj^
The lorentz force on the particle is
F=qE+q(v×B)=qEj^+vxi^+vyj^Bk^

mdvxdti^+dvydtj^=qE-vxBj^+Bvyi^
Component wise we can write
dvxdt=qmBvy              …………..(1)

dvydt=qmE-vzB      ………….(2)
This is pair of coupled differential equations. We can decouple the equations by differentiating one of them w.r.t. time and substituting the result into the other equation.
Differentiating eqn. (2) w.r.t. time,
d2vydt2=-qmBdvxdt    …………(3)
Now substituting dvxdt from eqn. (1) in (3), we get
d2vydt2=-qBm2vy=-ω2vy    ……..(4)

Where   ω=qBm
Similarly by differentiating eqn. (1), we get
d2vxdt2=qmBdvydt          ……….(5)
On substituting dvydt from eqn. (2), we get
d2vxdt2=q2B2m2E-vzB        ……..(6)
The eqn. (4) is similar to equation of particle executing simple harmonic motion. Hence its solution is the form
vy-v0sinωt          ………..(7)

dvydt=v0ωcosωt     ……….(8)

From equation  (8), at t=0, dvvdt=v0ω
Also   vx=0 at t=0.
Hence from eqn. (2),  dvydt=qEm
Thus v0ω=qEm   or   v0=EB 

and vy=EBsinωt=dydt

or   0ydy=EB0tsinωtdt
      y=EBω(1-cosωt)             ………..(9)
On substituting the expression for dydt in eqn. (1), we get
dvxdt=qmBEBsinωt

0vxdvx=qEm0tsinωt

vx=EB(1-cosωt)=dxdt

0xdv=EE0t(1-cosωt)dt

      x=EBω(ωt-sinωt)        ………(10)
The equations (9) and (10) are the parametric equations of a cycloid.
    The maximum value of y is ymax=2EωB.
   If a circle of radius R-EωB were to roll on the x-axis, a fixed point on the circle would generate this cycloid.
   An observer at the Centre of this circle will be moving with velocity Rω=E/B along x-axis, Tle particle will appear to move along the circumference of a circle with speed Rω=E/B.
v2=vx2+vy2  v=EB(1-cosωt)2+sin2ωt

      =EB·2sinωt2=2EBsinωt2
Now v=0 when ωt2=0,π,2π, t=0.2πω,4πω,......
Thus the two nearest instants at which velocity is zero differ by 2π/ω.
Thus,S=02π/θvdt=02π/ω2EBsinωt2dt=8EqBmB=8mEqB2.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring