Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A plano-convex lens having radius of curvature of first surface 2 cm exhibits focal length of f1 in air. Another plano-convex lens with first surface radius of curvature 3 cm has focal length of f2 when it is immersed in a liquid of refractive index 1.2. If both the lenses are made of same glass of refractive index 1.5, the ratio of f1 and f2 will be :-

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

3 : 5

b

2 : 3

c

1 : 3

d

1 : 2

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Both lenses are plano-convex, so the second surface is plane (R=R = \infty), which simplifies the lens maker’s formula:

1f=(nnm1)(1R0)\frac{1}{f} = \left( \frac{n}{n_m} - 1 \right) \left( \frac{1}{R} - 0 \right)

where:

  • nn is the refractive index of the lens material,
  • nmn_m is the refractive index of the surrounding medium,
  • RR is the radius of curvature of the curved surface.

 

Step 1: Calculate f1f_1 (Lens in Air)

For Lens 1 in Air:

1f1=(1.511)(12)\frac{1}{f_1} = \left( \frac{1.5}{1} - 1 \right) \left( \frac{1}{2} \right)

 1f1=(1.51)×12\frac{1}{f_1} = \left( 1.5 - 1 \right) \times \frac{1}{2} 1f1=0.5×12=0.52=14\frac{1}{f_1} = 0.5 \times \frac{1}{2} = \frac{0.5}{2} = \frac{1}{4} f1=4 cmf_1 = 4 \text{ cm} 

 

Step 2: Calculate f2f_2 (Lens in Liquid)

For Lens 2 in Liquid:

1f2=(1.51.21)(13)\frac{1}{f_2} = \left( \frac{1.5}{1.2} - 1 \right) \left( \frac{1}{3} \right)

 1f2=(1.51.21.2)×13\frac{1}{f_2} = \left( \frac{1.5 - 1.2}{1.2} \right) \times \frac{1}{3} 1f2=(0.31.2)×13\frac{1}{f_2} = \left( \frac{0.3}{1.2} \right) \times \frac{1}{3} 1f2=0.33.6\frac{1}{f_2} = \frac{0.3}{3.6} f2=3.60.3=12 cmf_2 = \frac{3.6}{0.3} = 12 \text{ cm} 

 

Step 3: Find the Ratio f1f2\frac{f_1}{f_2}

f1f2=412=13\frac{f_1}{f_2} = \frac{4}{12} = \frac{1}{3}

 

Final Answer:

13\boxed{\frac{1}{3}}

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring