Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

A plano-convex lens having radius of curvature of first surface 2 cm exhibits focal length of f1 in air. Another plano-convex lens with first surface radius of curvature 3 cm has focal length of f2 when it is immersed in a liquid of refractive index 1.2. If both the lenses are made of same glass of refractive index 1.5, the ratio of f1 and f2 will be :-

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

3 : 5

b

2 : 3

c

1 : 3

d

1 : 2

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Both lenses are plano-convex, so the second surface is plane (R=R = \infty), which simplifies the lens maker’s formula:

1f=(nnm1)(1R0)\frac{1}{f} = \left( \frac{n}{n_m} - 1 \right) \left( \frac{1}{R} - 0 \right)

where:

  • nn is the refractive index of the lens material,
  • nmn_m is the refractive index of the surrounding medium,
  • RR is the radius of curvature of the curved surface.

 

Step 1: Calculate f1f_1 (Lens in Air)

For Lens 1 in Air:

1f1=(1.511)(12)\frac{1}{f_1} = \left( \frac{1.5}{1} - 1 \right) \left( \frac{1}{2} \right)

 1f1=(1.51)×12\frac{1}{f_1} = \left( 1.5 - 1 \right) \times \frac{1}{2} 1f1=0.5×12=0.52=14\frac{1}{f_1} = 0.5 \times \frac{1}{2} = \frac{0.5}{2} = \frac{1}{4} f1=4 cmf_1 = 4 \text{ cm} 

 

Step 2: Calculate f2f_2 (Lens in Liquid)

For Lens 2 in Liquid:

1f2=(1.51.21)(13)\frac{1}{f_2} = \left( \frac{1.5}{1.2} - 1 \right) \left( \frac{1}{3} \right)

 1f2=(1.51.21.2)×13\frac{1}{f_2} = \left( \frac{1.5 - 1.2}{1.2} \right) \times \frac{1}{3} 1f2=(0.31.2)×13\frac{1}{f_2} = \left( \frac{0.3}{1.2} \right) \times \frac{1}{3} 1f2=0.33.6\frac{1}{f_2} = \frac{0.3}{3.6} f2=3.60.3=12 cmf_2 = \frac{3.6}{0.3} = 12 \text{ cm} 

 

Step 3: Find the Ratio f1f2\frac{f_1}{f_2}

f1f2=412=13\frac{f_1}{f_2} = \frac{4}{12} = \frac{1}{3}

 

Final Answer:

13\boxed{\frac{1}{3}}

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon