Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A rectangular surface has length 4661 m and breadth 3318 m. In this area, square tiles are to be put. The maximum length of such tiles is ____ m.


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

A rectangular surface has length 4661 meters and breadth 3318 meters. In this area, square tiles are to be put. The maximum length of such tiles is 79 m.
Given, a rectangular surface has length 4661 m and breadth 3318 m.
Applying Euclid’s division Lemma,
Here,4661  > 3318 Let a = 4661 and b = 3318 4661 = 3318 × 1 + 1343 Here, r = 1343  0.   Dividend = 3318 and divisor = 1343.
Applying Euclid’s division Lemma,
Here,3318  > 1343 Let a = 3318  and b =1343 3318 = 1343  ×  2 + 632 Here, r=632  0   Dividend = 1343 and divisor = 632.
Applying Euclid’s division Lemma,
Here,1343  > 632 Let a = 1343  and b =632 1343 = 632  ×  2 + 79 Here, r = 79  0   Dividend = 632 and divisor = 79.
Applying Euclid’s division Lemma,
Here, 632  > 79 Let a =  632  and b =79 632 = 79 × 8 + 0 Here, r = 0  
The final value is 79 as remainder is 0.
Hence, the maximum length is 79 m.
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring