Q.

A right circular cone of radius 3 π‘π‘š, has a curved surface area of 47.1cm2

Find the volume of the cone. (Use Ο€ = 3. 14)

                                                (OR)

In the given figure, βˆ†π‘ƒπ‘„π‘… is an equilateral triangle of side 8 π‘π‘š and 𝐷, 𝐸, 𝐹 are centres of circular arcs, each radius 4 π‘π‘š. Find the area of shaded region. (Use Ο€ = 3. 14 and  3     = 1. 732)

 

Question Image

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

We need to find the volume of the cone of radius 3 π‘π‘š provided that its curved surface area of 47.1 cm2.
It is known that the CSA of a cone is given as 𝐢𝑆𝐴 = Ο€π‘Ÿπ‘™, where π‘Ÿ and 𝑙 are the radius and slant height respectively.
On substituting the values, we get the slant height as
β‡’ 47. 1 = Ο€(3)𝑙
β‡’ 47. 1 = 9. 42𝑙
β‡’ 𝑙 = 5 π‘π‘š
Now, the height of the cone can be given as
β„Ž = 52-32
β‡’ β„Ž = 16
β‡’ β„Ž = 4 π‘π‘š
Also, the volume of the cone is given by 𝑉 = 1/3Ο€π‘Ÿ2 h . On substituting the values, we get
3 Ο€π‘Ÿ β„Ž
β‡’ 𝑉 = 1/3 Ο€ x 3 x 4
β‡’ 𝑉 = 37.68 cm3
Hence, the volume of the cone is 37.68 cm3

 

                                                                           (OR)

 

We need to find the area of shaded region provided that βˆ†π‘ƒπ‘„π‘… is an equilateral triangle of side 8 π‘π‘š and 𝐷, 𝐸, 𝐹 are centres of circular arcs, each radius 4 π‘π‘š.

It can be observed that the arcs form the sector in the triangle and hence, the area of shaded region is

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ β„Žπ‘Žπ‘‘π‘’π‘‘ π‘Ÿπ‘’π‘”π‘–π‘œπ‘› = π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ βˆ†π‘ƒπ‘„π‘… βˆ’ 3(π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ)

β‡’ π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ β„Žπ‘Žπ‘‘π‘’π‘‘ π‘Ÿπ‘’π‘”π‘–π‘œπ‘› = 34Γ—side2 - 3 Γ—ΞΈ360°×πr2

β‡’ π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ β„Žπ‘Žπ‘‘π‘’π‘‘ π‘Ÿπ‘’π‘”π‘–π‘œπ‘› = 34Γ—82 - 3 Γ—60Β°360°×π42 163 - 8Ο€ 16 Γ— 1.732 - 8 x 3.14 27.712 - 25.12 2.592 cm2

Hence, the area of the shaded region is  2.592 cm2.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon