Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A small, electrically charged bead can slide on a circular, frictionless, thin, insulating ring. Charge on the bead is Q and its mass is m. A small electric dipole, having dipole moment P is fixed at the centre of the circle with the dipole’s axis lying in the plane of the circle. Initially, the bead is held on the perpendicular bisector of the dipole (see fig.). Ignore gravity. The magnitude of normal force exerted by the ring on the bead at position θ is (K=14πε0)
Question Image
 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

KPQcosθr3

b

2KPQcosθr3

c

QKPsinθr3

d

Zero

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

(a) Let us apply the law of conservation of energy for the bead having mass m and charge Q
12mv2+QKPcosθr2=12mv02+QKPcos(π/2)r2=0 
We can then express the velocity of the bead at angle θ as
v=2QKPcosθmr2(π2θπ)…………………(1)
Question Image 
(b) The circular motion needs a radial force equal to mv2/r.
The radial component of electric field due to the dipole Er=2KPcosθr3  
Using the expression of the velocity (equation 1), we notice that the radial force on the bead (=QEr) is just equal to mv2/r, the required centripetal force. Thus the ring need not exert any force on the bead to sustain circular motion. 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon