Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A small object loops a vertical loop of radius R in which a symmetrical section of 2α has been removed. Find the maximum and minimum heights from which the object after loosing contact with the loop at point A and flying through the air, will reach point B. Then the possible values of H are 

Question Image

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2.48 R

b

3.4 R

c

1.5 R

d

2.45 R

answer is A, D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let v0 be the speed of the object at point A. Between A and B path of the object is a parabola, where

Question Image

AB=range

or 2R sin α=2 v02 sin α cos αg

So, v02=gRcos α     ...(1)

Applying conservation of mechanical energy at P and A we get

mgH=mgR1+cos α+12 mv02

or HR=1+cos α +v022gR

but v02gR=1cos α        (from equation (1))

HR=1+cos α+12 cos α=k (say)

or 2 cos2 α-2(k-1) cos α+1=0

or cos2 α-(k-1) cos α+12=0

or cos α=12k-1±k-12-2

now k-12-20 or k-12

or k(1+2)    .....(2)

On the other hand,

cos α1

i.e., 12(k-1)+(k-1)2-21

or k-1+k-12-2 2

or (k-1)2-22-(k-1)2

or 4k 10

or k2.5        ...(3)

Hence from (2) and (3) we have

1+2 k2.5

or 1+2R H2.5 R    as k=HR

or 2.414 RH2.5 R

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring