Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A solid cylinder of radius r and mass M rests on a curved path  of radius R as  shown figure. When displaced through a small angle θ  as shown and left to itself, it  executes simple harmonic motion. Then the time period of oscillation is (Assume  that the cylinder rolls without slipping)

Question Image

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

T=2π8(Rr)g

b

T=2π3(Rr)2g

c

T=2πg(Rr)

d

T=2π(Rr)g

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Restoring torque acting on a cylinder after a small displacement θ , about an axis passing through point of contact O with the curved path, τ=Mgrsinθ, for small angles   sinθθ
Therefore,  τ=Mgrθ………….(1)
Angular acceleration of the cylinder is  α=d2ϕdt2 
 From the diagram, rϕ=(Rr)θ 
   ϕ=(Rr)θr 
   Consequently,  α=d2dt2(Rr)θr
   α=(Rr)rd2θdt2……………………. (2)
   Moment of inertia of the cylinder about a point of contact is I=32Mr2   
   Using the definition of torque  τ=Iα and substituting equation (2) in it,
  τ=32Mr2(Rr)rd2θdt2   
   Substituting equation (1) in the above relation,
 Mgrθ=32Mr2(Rr)rd2θdt2  
   Mgθ=32M(Rr)d2θdt2
   gθ=32(Rr)d2θdt2
  This equation can be written as  0=d2θdt2+23(Rr)gθ
   Where  d2θdt2=α, Therefore  23(Rr)gθ=α
   Comparing this with the equation of motion for angular simple harmonic motion,  α=ω2θ ,
  ω2=2g3(Rr)
 Hence angular frequency is  ω=2g3(Rr)
2πT=2g3(Rr), where   ω=2πT
 
T=2π3(Rr)2g

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring