Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A solution of the differential equation 

dydx=1xyx2sin y2+1 is

                         ( C is an arbitrary constant)

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x2cos y2sin y22Cey2=2

b

y2cos x2sin y22Cey2=2

c

x2cos y2sin y2ey2=4

d

none of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The given differential equation can be written 

as dxdy=xyx2sin y2+1

 1x3dxdy1x2y=ysin y2 . This equation is reducible to

 linear equation, so putting 1/x2=u the last equation can

 be written as dudy+2uy=2y sin y2

The integrating factor of this equation is ey2. So required solution is

uey2=2ysin y2ey2dy+C=(sin t)etdt+C t=y2=(1/2)ey2sin y2cos y2+C 2u=sin y2cos y2+Cey2 2=x2cos y2siny22Cey2.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring