Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A solution of the differential equation

(x2+xy+4x+2y+4dydxy2=0,x>0  passes through the point (1 ,3). The solution curve 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

intersects  y = x + 2 exactly at one point ,

does not intersect y = (x + 3)2

b

intersects  y = x + 2 exactly at two point

c

 intersects  y = (x + 2)2 

d

none of these 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The given differential equation is  

x2+xy+4x+2y+4dydxy2=0,x>0x2+4x+4+(xy+2y)dydx=y2(x+2)2+y(x+2)dydx=y2(x+2)(x+y+2)dydx=y2

 dydx=y2(x+2)(x+2+y)                  …(i)

Let x+2=X and  y=YThen ,  dydx=dydYdYdXdXdx=dYdX

Substituting these values in (i), we get 

dYdX=Y2X(X+Y)X2+XYdY=Y2dXX2dY=Y2dXXYdY1YdY=XdYYdXX21YdY=dYX 

On integrating, we get  

log|Y|=YX+Clog|y|=yx+2+C              …(ii)

The curve given in (ii) passes through the point (1, 3). 

log3=1+CC=log31

Substituting the value of C in (ii), we obtain 

log|y|=yx+2log31                     …(iii)

In order to find the points of intersection (if any) of (iii) and  y=x+2, we solve the two equations simultaneously.

 Putting  y=x+2 in (iii), we obtain 

log(x+2)=log3x+2=±3x=1. [x>0]

Putting  x = 1 in  y=x+2, we obtain y = 3. 

So, the solution curve (iii) intersects  y=x+2  exactly at one point (1,3)

So, option (a) is correct but option (b) is incorrect. Putting  y = (x + 2)2 in (iii), we obtain 

2log|x+2|=(x+2)log31

 2log(x+2)=x1+log3 x+1+2log(x+2)=log3

We find that f(x) =x+1+2 log (x + 2) is strictly increasing for x > 0 and its minimum value is f(0) = 1 + 2 log 2 > log3 . 

So, the above equation has no solution. 

So, y = (x + 2)2 does not intersect the solution curve. 

To find the point of intersection of the solution curve (iii) and

y=(x+3)2, we put y=(x+3)2 in (iii) to get 

log(x+3)2=(x+3)2x+2log31

 log(x+3)23+(x+3)2x+21=0

For x>0,log(x+3)23+(x+3)2x+21>0 So, the above equation has no solution.

 Hence, y = (x + 3)2  does not intersect the solution curve. 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring