Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

(a) Solve the following equation for x.
tan1 1x1+x=12tan1 x;x>0
(b) Find the value of tan tan-1 xytan1 xyx+y

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given, tan1 1x1+x=12tan1 x;x>0
 2tan1 1x1+x=tan1 x
[multiplying both sides by 2]
 tan-121x1+x11x1+x2=tan1 x2tan1 x=tan1 2x1x2;1<x<1 tan1 2(1x)(1+x)(1+x)2(1x)2=tan1 x tan1 21x24x=tan1 x(ab)(a+b)=a2b2and (a+b)2(ab)2=4ab
 21x24x=x 1x22x=x1x2=2x23x2=1x2=13x=±13
x>0given, so we do not take   x=13
x=13 is the only solution of the given equation.

b) We know that tan1 xtan1 y=tan1 xy1+xy
Replacing x by xy and y by xyx+y
tan1 xytan1 xyx+y=tan1 xyxyx+y1+xyxyx+y
=tan1 x(x+y)y(xy)y(x+y)y(x+y)+x(xy)y(x+y)=tan1 x(x+y)y(xy)y(x+y)×y(x+y)y(x+y)+x(xy)=tan1 x(x+y)y(xy)y(x+y)+x(x+y)×y(x+y)y(x+y)=tan1 x(x+y)y(xy)y(x+y)+x(x+y)=tan1 x2+xyyx+y2yx+y2+x2xy=tan1 x2+y2+yxyxy2+x2+yxxy=tan1 x2+y2y2+x2=tan1 (1)
=tan1 tan π4 As, tan Π4=1=π4
 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring