Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A stair – case of length l rests against a vertical wall and a floor of a room. Let P be a point on the stair-case, nearer to its end on the wall, that divides its length in the ratio 1 : 2. If the stair-case begins to slide on the floor, then the locus of P is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

a circle of radius 12

b

a circle of radius32l

c

an ellipse of eccentricity32

d

an ellipse of eccentricity12

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let point A (a,0) is on x-axis and B(0,b) is on y-axis.

Question Image

 

 

 

 

 

Let P(h,k), divides AB in the ratio 2 : 1. So, by section formula, If a point Q(x , y) divides a line segment joining C(x1 , y ) , D(x2 ,y2) in the ratio m : n internally, Then, Q(x ,y) = (mx2+nx1m+n, my2+ny1m+n). So, using the above formula, h=2(0)+1(a)1+2=a3 k=2(b)+1(0)3=2b3 a=3h and b=3k2 Now, a2+b2=l2 9h2+9k24=l2 h2l32+k22l32=1 Now  e=1-l29×94l2=1-14=32               (Eccentricity of ellipse x2a2+y2b2=1 is b2-a2b2  if b > a)

Thus, required locus of P is an ellipse with eccentricity32

Hence, the correct option is 2.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring