Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A tent of height 3.3 m is in the form of a right circular cylinder of diameter 12 m and height 2.2 m, surmounted by a right circular cone of the same diameter. Find the cost of the canvas of the tent at the rate of Rs. 500 per m2.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

Rs. 4900

b

Rs. 2000

c

Rs. 99000

d

Rs. 5600 

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Height of tent =3.3 m
The height of cylindrical proportion
 The height of conical portion=Height of tent-Height of cylindrical portion
=3.3-2.2
=1.1 m
Given, diameter of the cylinder, d=12 m
∴ Radius =122=6 m
CSA of cylindrical portion =2πrh
=2×227×6×2.2
=82.971 m2
Firstly, we have to find the slant height (l) of the conical portion
l2=h2+r2
l2=1.12+62
l2=1.21+36
l2=37.21
l=37.21
l=6.1 m
∴ CSA of the conical portion =πrl
=227×6×6.1
=115.029 m2
So, Total Surface area of tent=Surface area of conical portion+Surface area of cylindrical portion
=115.029+82.971
=198 m2
∴ Canvas required to make the tent =198 m2
Cost of 1 m2 canvas =Rs. 500
Cost of 198 m2 canvas =Rs. 500×198
                                     =Rs. 99000
  
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring