Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A thin uniform annular disc (see figure) of mass M  has outer radius 4R  and inner radius 3R.  The work required to take a unit mass from point P on its axis to infinity is

Question Image

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2GM7R(42-5)

b

-2GM7R(42-5)

c

GM4R

d

2GM5R(2-1)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let us consider a circular elemental area of radius x and thickness dx. The area of the shaded portion = 2πxdx.  Let dm be the mass of the shaded portion.

Therefore     Massarea=Mπ4R2-π3R2=dm2πxdx

                    dm =2M7R2xdx

The gravitational potential of the mass dm  at P is

dV =-G dm4R2+x2=-G16R2+x2×2M7R2xdx

= -2GM7R2xdx16R2+x2                (1)

Suppose 16 R2 +x2=t2

                2xdx =2tdt  xdx =tdt

Also for x =3R, t=5R

and for  x = 4R, t =42R

On integrating equation (1), taking the above limits, we get

V = -5R42R2GM7R2dt = -2GM7R2t5R42R     = -2GM7R242R-5R = V = -2GM7R42-5

Now WP1=V-VP=-VP

Therefore    WP=2GM7R(42-5)

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring