Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

A thin uniform bar of length L and mass 8m lies on a smooth horizontal table . Two point masses m and 2m are moving in the same horizontal plane from opposite sides of the bar with speeds 2v and v respectively . The masses stick to the bar after collision at a distance L3and L6  respectively from the centre of the bar. If the bar starts rotating about its center of mass as a result of collision, the angular speed of the bar will be :

Question Image

 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

υ6L

b

υ5L 

c

6υ5L 

d

3υ5L 

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Here, the two masses crash with the rod and become locked together; as a result, the masses enter the system and the imposed external torque is therefore required to be zero. Therefore, the system's angular momentum must be conserved. We are aware that a body's centre of mass is determined by,

R=mirimi

After the collision, the system's centre of mass will be located around point O.

R=8m×0+2m×L6-m×L38m+2m+m=0
We also know that a body's angular momentum around a point is determined by,

L=mvr=

Now, the system's angular momentum before impact is,

Li=m×2v×L3+2m×v×L6

Li=2mvL3+mvL3=mvL

Let's assume that the system's angular speed upon collision is,
Thus, the system's angular momentum around O after the impact is,

Lf=(Irod+Im+I2m)ω

Now, a rod's moment of inertia around its centre of mass is given by,

I=ML212

Irod=8mL212

The mass m's moment of inertia is Im=mL32=mL29

The mass 2m moment of inertia is  I2m=2mL62=mL218

thus we get,

Lf=(Irod+Im+I2m)ω

Lf=8mL212+mL29+mL218ω=56mL2ω

Thus, Li=Lf

mvL=56mL2ω

ω=6v5L

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon