Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

A uniform solid cylinder of mass 'm' and radius 'r' rolls along an inclined rough plane of inclination 45°. If it starts to roll from rest from the top of the plane then the linear acceleration of the cylinder axis will be :-

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

2g

b

132g

c

2g3

d

12g

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 

Step 1: Forces Acting on the Cylinder

For a rolling object on an inclined plane, the forces acting are:

Gravitational force (mgmg):

  • Component along the incline: mgsinθmg \sin\theta
  • Component perpendicular to the incline: mgcosθmg \cos\theta

Normal reaction force (NN): Acts perpendicular to the inclined surface.

Friction force (ff): Provides the necessary torque for rolling motion (without slipping). It acts up the incline.

 

Step 2: Equations of Motion

1. Translational Motion

From Newton's Second Law along the incline:

mgsinθf=mamg \sin\theta - f = ma

where aa is the linear acceleration of the cylinder.

2. Rotational Motion

For rotation about the center, using Torque Equation:

fr=Iαf r = I \alpha

For a solid cylinder, the moment of inertia about its axis is:

I=12mr2I = \frac{1}{2} m r^2

Using the pure rolling conditionα=ar\alpha = \frac{a}{r},

fr=(12mr2)arf r = \left(\frac{1}{2} m r^2\right) \frac{a}{r}

 f=12maf = \frac{1}{2} m a 

 

Step 3: Solve for Acceleration

Substituting f=12maf = \frac{1}{2} m a into the translational equation:

mgsinθ12ma=mamg \sin\theta - \frac{1}{2} m a = ma

 mgsinθ=ma+12mamg \sin\theta = ma + \frac{1}{2} ma mgsinθ=32mamg \sin\theta = \frac{3}{2} ma a=23gsinθa = \frac{2}{3} g \sin\theta

Substituting θ=45\theta = 45^\circ, we get:

a=23gsin45a = \frac{2}{3} g \sin 45^\circ

 a=23g×12a = \frac{2}{3} g \times \frac{1}{\sqrt{2}} a=2g32a = \frac{2g}{3\sqrt{2}} a=2g3a = \frac{\sqrt{2} g}{3} 

 

Final Answer:

a=2g3a = \frac{\sqrt{2} g}{3}

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon