Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A uniform solid cylinder of mass 'm' and radius 'r' rolls along an inclined rough plane of inclination 45°. If it starts to roll from rest from the top of the plane then the linear acceleration of the cylinder axis will be :-

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2g

b

132g

c

2g3

d

12g

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 

Step 1: Forces Acting on the Cylinder

For a rolling object on an inclined plane, the forces acting are:

Gravitational force (mgmg):

  • Component along the incline: mgsinθmg \sin\theta
  • Component perpendicular to the incline: mgcosθmg \cos\theta

Normal reaction force (NN): Acts perpendicular to the inclined surface.

Friction force (ff): Provides the necessary torque for rolling motion (without slipping). It acts up the incline.

 

Step 2: Equations of Motion

1. Translational Motion

From Newton's Second Law along the incline:

mgsinθf=mamg \sin\theta - f = ma

where aa is the linear acceleration of the cylinder.

2. Rotational Motion

For rotation about the center, using Torque Equation:

fr=Iαf r = I \alpha

For a solid cylinder, the moment of inertia about its axis is:

I=12mr2I = \frac{1}{2} m r^2

Using the pure rolling conditionα=ar\alpha = \frac{a}{r},

fr=(12mr2)arf r = \left(\frac{1}{2} m r^2\right) \frac{a}{r}

 f=12maf = \frac{1}{2} m a 

 

Step 3: Solve for Acceleration

Substituting f=12maf = \frac{1}{2} m a into the translational equation:

mgsinθ12ma=mamg \sin\theta - \frac{1}{2} m a = ma

 mgsinθ=ma+12mamg \sin\theta = ma + \frac{1}{2} ma mgsinθ=32mamg \sin\theta = \frac{3}{2} ma a=23gsinθa = \frac{2}{3} g \sin\theta

Substituting θ=45\theta = 45^\circ, we get:

a=23gsin45a = \frac{2}{3} g \sin 45^\circ

 a=23g×12a = \frac{2}{3} g \times \frac{1}{\sqrt{2}} a=2g32a = \frac{2g}{3\sqrt{2}} a=2g3a = \frac{\sqrt{2} g}{3} 

 

Final Answer:

a=2g3a = \frac{\sqrt{2} g}{3}

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring