Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A vessel is in the form of an inverted cone. Its height is 8 cm and the radius of its top, which is open, is 5 cm. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5 cm are dropped into the vessel, one-fourth of the water flows out. Find the number of lead shots dropped in the vessel.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The figure drawn below of the vessel and lead shot is to visualize it.

A vessel is in the form of an inverted cone. Its height is 8 cm and the radius of its top, which is open, is 5 cm. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5 cm are dropped into the vessel, one-fourth of the water flows out. Find the number of lead shots dropped in the vessel

As the water is filled up to the brim in the vessel.

The volume of water in the vessel = Volume of the conical vessel

On dropping a certain number of lead shots sphere into the vessel one-fourth of the water flows out.

The volume of all lead shots dropped into the vessel = 1/4 × Volume of the water in the vessel

Hence,

Number of lead shots = 1/4 × volume of the water in the vessel ÷ volume of each lead shot

We will find the volume of the water in the vessel and lead shot by using formulae;

Volume of  sphere = 4/3 πr3

where r is the radius of the sphere

Volume of  cone= 1/3 πR2h

where R and h are the radius and height of the cone respectively

Height of the conical vessel, h = 8 cm

Radius of the conical vessel, R = 5 cm

Radius of the spherical lead shot, r = 0.5 cm

Number of lead shots = 1/4 × volume of the water in the vessel ÷ volume of each lead shot

= 1 /4 × (1/3) πR2h × 3/4πr3

= πR2h/12 × 3/4πr3

= R2h / 16r3

= (5cm × 5 cm × 8 cm) / (16 × 0.5 cm × 0.5 cm × 0.5 cm)

= 100

Thus, the number of lead shots dropped in the vessel is 100.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring