Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

(a) Evaluate 11-cot xdx. (b) Evaluate 3(sin x-2) cos x13-cos2x-7 sin xdx.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let sin x=Addx(sin x-cos x)+B(sin x-cos x)  sin x=A(cos x+sin x)+B(sin x-cos x)          ...(ii)

On equating the coefficient of  and cosx coefficients from both sides, we get

and             A+B=1             ...(iii)             A-B=0             ...(iv)

On adding Eqs. (iii) and (iv), we get

 2A=1A=12

On putting the value of A in Eq. (iv), we get

        12-B=0  B=12

Now, from Eqs. (i) and (ii), we get

 I=12ddx(sin x-cos x)+12(sin x-cos x)sin x-cos xdx   I=12(cos x+sin x)+12(sin x-cos x)sin x-cos xdx       =12cos x+sin xsin x-cos xdx+12sin x-cos xsin x-cos xdx

Put sinx-cosx=t in first integral. Then, (cos x+sin x)dx=dt

   I=12dtt+12 dx          =12logt+12x+C          =12logsin x-cos x+12x+C   [ t=sin x-cos x] 

      Given integral =3(sinx-2)cosx13-1+sin2x-7sinx      dx                                   =3(sinx-2)cosx12+sin2x-7sinx   dx(1) put sinx =t then cosx dx =dt then from (1) I=3t-6t2-7t+12   dt    Put 3t-6=A ddt (t2-7t+12)+B Compare like terms on both sides  2A=3  A=32 and      -7A+B=-2         -7×32+B=-2                  B=212-2=21-42=172     I= 3t-2t2-7t+12dt           =  32(2t-7)t2-7t+12dt+17/2t2-7t+12dt           =322t-7t2-7t+12dt+1721t2-7t+12dt           =I1+I2                                                                              ...(ii) where, I1=322t-7t2-7t+12dt Put t2-7t+12=t1  (2t-7) dt=dt1 Then I1=32dt1t1=32log|t1|+C1              =32log |t2-7t+12|+C1              =32 log |sin2x-7sin x+12|+C1 and   I2=1721t2-7t+12dt              =172 1(t-3)(t-4)dt              =172 [log (t-4)-log(t-3)]              =172 logt-4t-3 =173log sin x-4sin x-3+C2                                                                                      [ t=sin x]

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring