Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

An ellipse has the points (1, –1) and (2, –1) as its foci and x + y – 5 = 0 as one of its tangents. Then the point where this line touches

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

239,29

b

329,229

c

349,119

d

(1, 1)

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Equation of tangent is x+y5=0.   Foci of ellipse are (1,1) and (2,1).   Product of perpendicular from foci upon any tangent is equal to square of the semi minor axis.   b2  =(1-1-52)(2-1-52) b2=5×42=10   Distance between foci =2ae 2ae=(2-1)2+(-1+1)2  ae=12 a2e2=14 a2(1-b2a2)=14 a2-b2=14 a2=414 centre of ellipse=(32,-1) Equation of ellipse is  (2x-3)241+(y+1)210=1 Substituting x from the equation of tangent, we have (2(5-y)-3)241+(y+1)210=1 10(49+4y228y)+41(y2+1+2y)=410 490+40y2280y+41y2+41+82y=410 81y2198y+121=0 (9y11)2=0 y=119 Now,x+y5=0 x=5y x=5119 x=349 

 

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
An ellipse has the points (1, –1) and (2, –1) as its foci and x + y – 5 = 0 as one of its tangents. Then the point where this line touches