Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

α,β are the roots of the equation x22x+3=0 . Then  the equation whose roots are P=α33α2+5α2 and Q=β3β2+β+5 is 

 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x23x+2=0

b

x2+3x+2=0

c

x23x2=0

d

None of these

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 Given α,β are roots of equation x22x+3=0

 α22α+3=0 -----(1) 

3=-α2+2α -----(2)

from eq1

     α2=2α3 multiply by α we get  α3=2α23αsub from eq 2  P    =2α23α3α2+5α2     =α2+2α2=32=1   

 and  β22β+3=0  ----(3)

β3-2β2+3β=0

β3=2β2-3β ----(4)

Similarly Q=β3-β2+β+5

sub from eq 4

Q=2β2-3β-β2+β+5

=β2-2β+5

=-3+5=2  from eq 3

P=1 , Q=2
So, sum of roots = 3, and product of roots = 2.

 Then required equation is x23x+2=0 . 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring