Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

(a) Solve for x,2tan-1x (cos x) = tan-1 (2cosecx).  (b) Solve for x,tan-1(x  1) + tan-1 x + tan-1(x + 1) = tan-1 3x                                                         OR

(a) Prove that 

tan-16x-8x31-12x2-tan-14x1-4x2=tan-12x; 2x<13

(b) Prove that3 sin-1x = sin-1(3x  4x3), x-π2,π2.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

(a)
Given equation is 

2 tan-1 (cos x) = tan-1 (2 cosec x)

    tan-12 cos x1-cos2 x=tan-12sin x          2 tan-1 x=tan-1 2x1-x2; -1<x<1    2 cos xsin2 x =2sin x     [ 1-cos2 x=sin2 x]  (i)

 sin x cos x  sin2 x = 0   sin x (cos x  sin x) = 0   sin x = 0 or cos x = sin x  sin x = sin 0  or cot x = 1 = cotπ4   x = 0 or π4   But here at x = 0, the given equation does not exist.  Hence, x=π4 is the only solution.

(b)
Given, 

tan-1 (x  1) + tan-1 x + tan-1 (x + 1) = tan-1 3x tan-1 (x  1) + tan-1 (x + 1) =tan-1 3x-tan-1 x

 tan-1x-1+x+11-(x-1) (x+1)=tan-1 3x-x1+3x(x)      tan-1 x+tan-1 y=tan-1x+y1-xy, xy<1and tan-1x-tan-1 y=tan-1 x-y1+xy, xy>-1   tan-12x1-(x2-1)=tan-12x1+3x2                       2x2-x2=2x1+3x2

 2x(1 + 3x2) = 2x(2  x2)   2x[1 + 3x2  (2  x2)] = 0   x(4x2  1) = 0  x = 0 or 4x2  1 = 0   x = 0 or x = ±12

                               OR

(a)

To prove, tan-16x-8x21-12x2-tan-14x1-4x2                                                =tan-1 2x; 2x<13 We consider, LHS=tan-16x-8x31-12x2-tan-14x1-4x2         =tan-16x-8x21-12x2-4x1-4x21+6x-8x31-12x2 4x1-4x2         tan-1 x-tan-1y=tan-1x-y1+xy; xy>-1       =tan-1(6x-8x3) (1-4x2)-4x(1-12x2)(1-12x2) (1-4x2)(1-12x2) (1-4x2)+(6x-8x3) (4x)(1-12x2) (1-4x2)       =tan-16x-24x3-8x3+32x5-4x+48x31-4x2-12x2+48x4+24x2-32x4       =tan-12x+16x3+32x516x4+8x2+1        =tan-12x(16x4+8x2+1)(16x4+8x2+1)=tan-1 2x=RHS 

(b)Consider, RHS = sin-1 (3x  4x3) (i)  Let x = sin θ,  then θ = sin-1 x  Now, from Eq. (i), we get  RHS = sin-1 (3 sin θ  4 sin3 θ)  = sin-1 (sin 3 θ) [ sin 3A = 3sin A  4sin3 A]  = 3θ  = 3 sin-1 x [θ = sin-1 x]  = LHS  Hence Proved.

 sin-1 (sinθ=θ, -π2, π2and here -12x12π6sin-1 xπ6

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring