Q.

(a) Solve for x,2tan-1x (cos x) = tan-1 (2cosecx).  (b) Solve for x,tan-1(x  1) + tan-1 x + tan-1(x + 1) = tan-1 3x                                                         OR

(a) Prove that 

tan-16x-8x31-12x2-tan-14x1-4x2=tan-12x; 2x<13

(b) Prove that3 sin-1x = sin-1(3x  4x3), x-π2,π2.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

(a)
Given equation is 

2 tan-1 (cos x) = tan-1 (2 cosec x)

    tan-12 cos x1-cos2 x=tan-12sin x          2 tan-1 x=tan-1 2x1-x2; -1<x<1    2 cos xsin2 x =2sin x     [ 1-cos2 x=sin2 x]  (i)

 sin x cos x  sin2 x = 0   sin x (cos x  sin x) = 0   sin x = 0 or cos x = sin x  sin x = sin 0  or cot x = 1 = cotπ4   x = 0 or π4   But here at x = 0, the given equation does not exist.  Hence, x=π4 is the only solution.

(b)
Given, 

tan-1 (x  1) + tan-1 x + tan-1 (x + 1) = tan-1 3x tan-1 (x  1) + tan-1 (x + 1) =tan-1 3x-tan-1 x

 tan-1x-1+x+11-(x-1) (x+1)=tan-1 3x-x1+3x(x)      tan-1 x+tan-1 y=tan-1x+y1-xy, xy<1and tan-1x-tan-1 y=tan-1 x-y1+xy, xy>-1   tan-12x1-(x2-1)=tan-12x1+3x2                       2x2-x2=2x1+3x2

 2x(1 + 3x2) = 2x(2  x2)   2x[1 + 3x2  (2  x2)] = 0   x(4x2  1) = 0  x = 0 or 4x2  1 = 0   x = 0 or x = ±12

                               OR

(a)

To prove, tan-16x-8x21-12x2-tan-14x1-4x2                                                =tan-1 2x; 2x<13 We consider, LHS=tan-16x-8x31-12x2-tan-14x1-4x2         =tan-16x-8x21-12x2-4x1-4x21+6x-8x31-12x2 4x1-4x2         tan-1 x-tan-1y=tan-1x-y1+xy; xy>-1       =tan-1(6x-8x3) (1-4x2)-4x(1-12x2)(1-12x2) (1-4x2)(1-12x2) (1-4x2)+(6x-8x3) (4x)(1-12x2) (1-4x2)       =tan-16x-24x3-8x3+32x5-4x+48x31-4x2-12x2+48x4+24x2-32x4       =tan-12x+16x3+32x516x4+8x2+1        =tan-12x(16x4+8x2+1)(16x4+8x2+1)=tan-1 2x=RHS 

(b)Consider, RHS = sin-1 (3x  4x3) (i)  Let x = sin θ,  then θ = sin-1 x  Now, from Eq. (i), we get  RHS = sin-1 (3 sin θ  4 sin3 θ)  = sin-1 (sin 3 θ) [ sin 3A = 3sin A  4sin3 A]  = 3θ  = 3 sin-1 x [θ = sin-1 x]  = LHS  Hence Proved.

 sin-1 (sinθ=θ, -π2, π2and here -12x12π6sin-1 xπ6

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon