Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

  At any instant, the position and velocity vectors of two particles are \[\overrightarrow {{r_1}} ,\,\overrightarrow {{r_2}} \,and\,\overrightarrow {{v_1}} ,\,\overrightarrow {{v_2}} \]    respectively. They will collide if : 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

{\bar v_1} = {\bar v_2}\

b

({\bar r_1} - {\bar r_2}) \cdot ({\bar v_1} - {\bar v_2}) = 0\

c

({\bar r_1} - {\bar r_2}) \times ({\bar v_1} - {\bar v_2}) = 0

d

{r_1} > {r_2};{v_1} < {v_2}\

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Since initial position vectors are {\bar r_1},{\bar r_2}  therefore position vector of the particles after time t will be ({\bar r_1} + {\bar v_1}t)\,\,and\,\,({\bar r_2} + {\bar v_2}t) . At the time of collision, the position vectors of both particles should be same.

{\bar r_1} + {\bar v_1}t = {\bar r_2} + {\bar v_2}t

({\bar r_1} - {\bar r_2}) = - ({\bar v_1} - {\bar v_2})t

({\bar r_1} - {\bar r_2}) \times ({\bar v_1} - {\bar v_2}) = - ({\bar v_1} - {\bar v_2}) \times ({\bar v_1} - {\bar v_2})t

({\bar r_1} - {\bar r_2}) \times ({\bar v_1} - {\bar v_2}) = 0

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
  At any instant, the position and velocity vectors of two particles are     respectively. They will collide if :