Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Body A of mass 4m moving with speed u collides with another body B of mass 2m at test. The collision is head on and elastic in nature. After the collision, the fraction of energy lost by the colliding body A is  [NEET 2019]

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

89

b

49

c

59

d

19

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The given situation of collision can be drawn as

Question Image

Applying law of conservation of linear momentum, Initial momentum of system = Final momentum of system

        (4m)u+(2m)u'=(4m)v1+(2m)v2

                 4mu + (2m)×0 = 4mv1 + 2mv2

or                              2u=2v1+v2                                                   …(i)

The kinetic energy of A before collision,

                                (KE)A=12(4m)u2=2mu2

Kinetic energy of B before collision,
                            (KE)B = 0
The kinetic energy of A after collision,

            KE'A=12(4m)v12=2mv12

Kinetic energy of B after collision,

               (KE')B=12(2m)v22=mv22

As, initial kinetic energy of the system = final kinetic energy of the system

               (KE)A+(KE)B=KE'A+KE'B

                                 2mu2 + 0 = 2mv12 + mv22

                                        2mu2=2mv12 + mv22

or                                        2u2=2v12 + v22                                   …(ii)

Solving Eqs. (j) and (ii), we get

                             v1=13u  and v2=43u

or the final velocity of A can be directly calculated by using the formula,

                  v1=m1-m2m1+m2u1+2m2u2m1+m2

                        =4m-2m4m+2mu+2(2m)×0(4m+2m)                   u2=u'=0

                        =2m6mu=13u

  Net decrease in kinetic energy of A,

            ΔKE=(KE)A-KE'A=2mu2-2mv12

                     = 2m (u2-v12)

Substituting the value of v1, we get

                   ΔKE=2mu2-u29=16mu29

  The fractional decrease in kinetic energy,

             ΔKE(KE)A=16mu29×12mu2=89

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon