Q.

Body A of mass 4m moving with speed u collides with another body B of mass 2m at test. The collision is head on and elastic in nature. After the collision, the fraction of energy lost by the colliding body A is  [NEET 2019]

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

89

b

49

c

59

d

19

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The given situation of collision can be drawn as

Question Image

Applying law of conservation of linear momentum, Initial momentum of system = Final momentum of system

        (4m)u+(2m)u'=(4m)v1+(2m)v2

                 4mu + (2m)×0 = 4mv1 + 2mv2

or                              2u=2v1+v2                                                   …(i)

The kinetic energy of A before collision,

                                (KE)A=12(4m)u2=2mu2

Kinetic energy of B before collision,
                            (KE)B = 0
The kinetic energy of A after collision,

            KE'A=12(4m)v12=2mv12

Kinetic energy of B after collision,

               (KE')B=12(2m)v22=mv22

As, initial kinetic energy of the system = final kinetic energy of the system

               (KE)A+(KE)B=KE'A+KE'B

                                 2mu2 + 0 = 2mv12 + mv22

                                        2mu2=2mv12 + mv22

or                                        2u2=2v12 + v22                                   …(ii)

Solving Eqs. (j) and (ii), we get

                             v1=13u  and v2=43u

or the final velocity of A can be directly calculated by using the formula,

                  v1=m1-m2m1+m2u1+2m2u2m1+m2

                        =4m-2m4m+2mu+2(2m)×0(4m+2m)                   u2=u'=0

                        =2m6mu=13u

  Net decrease in kinetic energy of A,

            ΔKE=(KE)A-KE'A=2mu2-2mv12

                     = 2m (u2-v12)

Substituting the value of v1, we get

                   ΔKE=2mu2-u29=16mu29

  The fractional decrease in kinetic energy,

             ΔKE(KE)A=16mu29×12mu2=89

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon