Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

By principle of mathematical induction cosθcos2θcos4θcos2n1θ,nN=

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

sin2nθ2nsinθ

b

cos2nθ2nsinθ

c

sin2nθ2n1sinθ

d

None of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let P(n):cosθcos2θcos4θcos2n1θ=sin2nθ2nsinθ (i) 

Step l :For n=1,

          LHS=cosθ and RHS =sin2θ2sinθ=cosθ  P(1 ) is true. 

Step ll :Let P(n) is true, then

P(k):cosθcos2θcos4θcos2k1θ=sin2kθ2ksinθ

Step III: For n=k+1

P(k+1):cosθcos2θcos2kθ=sin2k+1θ2k+1sinθ LHS =cosθcos2θcos2(k1)θcos2kθ=sin2kθ2ksinθcos2kθ=2sin2kθcos2kθ2k+1sinθ=sin2k+1θ2k+1sinθ=RHS

   For n =k + 1, P(n) is true. 

Hence, by principle for mathematical induction for all n  N,P(n) is true.     

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring