Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Choose correct option(s) from the following.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

If  f(x) is a continuous function in  [0,2] then there exist x1 and x2 where x1,x2[0,2] such that f(x2)f(x1)=12(f(2)f(0)) and  x2x1=1.

b

There CANNOT be a continuous function f:RR which attains each of the values in it’s range exactly three times

c

If f(x) is a continuous function in [0,2] with f(0)=f(2) then there exist x1 and  x2 where x1,x2[0,2] such that f(x2)=f(x1) and  x2x1=1.

d

There CANNOT be a continuous function f:RR which attains each of the values in it’s range exactly two times

answer is A, B, D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

A) Consider  g(x)=f(x+1)f(x),x[0,1].
Then g(1)=f(2)f(1)=g(0).  Hence there exists  x0[0,1] such that f(x0+1)=f(x0). So, we can take x2=x0+1 and  x1=x0.
B) Consider the function g(x)=f(x+1)f(x)12(f(2)f(0)),x[0,1], and apply the reasoning analogous to that used in the solution of the preceding option.
C)  g(x)={x+2if3x1,xif1<x1,x2if1<x3. and define  f by the formula
f(x)=g(x6n)+2nfor6n3x6n+3,nz. 
D) No such function possible

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring