Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Choose whether the given statement is true or false.


If G be the centroid of a triangle ABC and O be any other point, is it possible to prove that 3GA2+GB2+GC2=BC2+CA2+AB2 and  OA2+OB2+OC2= GA2+GB2+GC2+3GO2?


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

True

b

False 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

According to the problem, G be the centroid of a triangle ABC and O be any other point. We need to prove 3GA2+GB2+GC2=BC2+CA2+AB2 and OA2+OB2+OC2= GA2+GB2+GC2+3GO2.
Question ImageLet us assume the vertices A, B and C be (x1,y1), (x2,y2), (x3,y3),
We know that the centroid G of a triangle is defined as A+B+C3.
So, we get G=(x1+x2+x33, y1+y2+y33)
We know that the distance between two points (a,b) and (c,d) is defined as
(a-c)2+(b-d)2 .
So, we get AB2=(x2-x12+y2-y12)2
AB2=x12+x12-2x1x2+y12+y22-2y1y2
AB2=(x12+x12)+(y12+y22)-2(x1x2+y1y2)
Similarly, we get BC2=(x22+x32)+( (y22+y32)−2(x2x3+y2y3)
and CA2=(x32+x12)+( y32+y12)−2(x3x1+y3y1).
Let us consider AB2+ BC2+CA2.
AB2+ BC2+CA2=2(x12+x22+x32)+2(y12+y22+y32)−2(x1x2+x2x3+x3x1+y1y2+y2y3+y3y1)---(1).
Now, let us find GA2,GB2 and GC2.
So, we get GA2=(x1-x1+x2+x33)2+(y1-y1+y2+y33)2
GA2=(2x1-x2-x33)2+(2y1-y2-y33)2.
GA2=(4x12+x22+x32-4x1x2+2x2x3-4x3x19)2+(4y12+y22+y32-4y1y2-2y2y3-4y3y19)2
GA2=(4(x12+y12)+(x22+y22)+(x32+y32)-4(x1x2+y1y2)+2(x2x3+y2y3)-4(x3x1+y1y3)9).
Similarly, we get GB2=((x12+y12)+4(x22+y22)+(x32+y32)-4(x1x2+y1y2)-4(x2x3+y2y3)+2(x3x1+y1y3)9).,
GC2=((x12+y12)+4(x22+y22)+4(x32+y32)+2(x1x2+y1y2)-4x2x3+y2y3-4(x3x1+y1y3)9).
Now, let us consider GA2+GB2+GC2 .
GA2+GB2+GC2=(6(x12+y12)+6(x22+y22)+6(x32+y32)-6(x1x2+y1y2)-6x2x3+y2y3-6(x3x1+y1y3)9).
GA2+GB2+GC2=(2(x12+y12)+2(x22+y22)+2(x32+y32)-2(x1x2+y1y2)-2x2x3+y2y3-2(x3x1+y1y3)3)….(2).
From equation (1), we get 3(GA2+GB2+GC2)= AB2+ BC2+CA2
So, we have proved
 3(GA2+GB2+GC2)= AB2+ BC2+CA2---(3).
Now, let us assume the point O be (x,y).
Now, let us find  OA2 .
So, we get OA2=(x1-x2+y1-y2)2
OA2=x12+x2-2xx1+y12+y2-2yy1
OA2=x12+y12+(x2+y2)-2(xx1+yy1)
Similarly, we get OB2=x22+y22+(x2+y2)- 2(xx2+yy2) and
 OA2=x32+y32+(x2+y2)- 2(xx3+yy3)
Let us consider OA2+OB2+OC2.
OA2+OB2+OC2=(x12+x22+x32+y12+y22+y32)+3(x2+y2)-2(xx1+xx2+xx3+yy1+yy2+yy3)
OA2+OB2+OC2=(x12+x22+x32+y12+y22+y32)+3(x2+y2)-2x(x1+x2+x3)-2y(y1+y2+y3)---(4).
Now, let us find GO2
GO2=(x-x1+x2+x332+y-y1+y2+y332)2
GO2=x2+x1+x2+x332-2 xx1+x2+x33+y2+y1+y2+y332-2yy1+y2+y33
  GO2=x2+y2+x12+x22+x32+y12+y22+y32+2x1x2+2x2x3+2x3x1+2y1y2+2y2y3+2y1y39-(2xx1+x2+x3+2y(y1+y2+y3)3).
3GO2=3(x2+y2) +x12+x22+x32+y12+y22+y32+2x1x2+2x2x3+2x3x1+2y1y2+2y2y3+2y1y33-2xx1+x2+x3-2y(y1+y2+y3) .
Using equation (2), we get
GA2+GB2+GC2+3GO2=3x2+y2+3(x12+y12)+3(x22+y22)+3(x32+y32)3-2xx1+x2+x3-2y(y1+y2+y3)
GA2+GB2+GC2+3GO2=3x2+y2+x12+y12+x22+y22+x32+y32-2xx1+x2+x3-2y(y1+y2+y3)
From equation (4), we get
OA2+OB2+OC2=GA2+GB2+GC2+3GO2 ---(5).
From equations (3) and (5), we have proved 3(GA2+GB2+GC2)= BC2+CA2+AB2 and
OA2+OB2+OC2=GA2+GB2+GC2+3GO2
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring