Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

 Column -I Column -II
aThe maximum value of {cos(2A+θ)+cos(2B+θ)} is
(where A, B are constants)
p2sin (A + B)
bThe maximum value of {cos2A+cos2B} is
(where (A + B) is constant and A,B(0,π/2))
q2sec (A + B)
cThe minimum value of {sec2A+sec2B} is 
(where (A + B) is constant and A,B(0,π/4))
r2cos (A + B)
dThe minimum value of {tanθ+cotθ2cos2(A+B)} is
(where A, B are constants and θ(0,π/2))
s2cos (A – B)

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

a-q,b-r,c-s,d-p

b

a-q,b-s,c-r,d-p

c

a-s,b-r,c-q,d-p

d

a-p,b-r,c-s,d-q

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

a)
{cos(2A+θ)+cos(2B+θ)}=2cos(AB)cos(A+B+θ)
Maximum value is 2cos(A–B) when cos(A+B+θ)=1
b)
{cos2A+cos2B}=2cos(A+B)cos(AB)
Maximum value is 2cos(A–B) when cos(A+B) =1

c)For y=secx,x(0,π/2) , tangent drawn to it at
any point lies completely below the graph of y=secx;
thus, sec2A+sec2B2sec(A+B)
or sec2A+sec2Bsec(A+B)
Hence, the minimum value is 2sec(A+B).
d)
{tanθ+cotθ2cos2(A+B)}=(tanθcotθ)2+22cos2(A+B)=(tanθcotθ)2+4sin2(A+B)
Minimum value occurs when tanθ=cotθ and
minimum value is 4sin2(A+B)=2sin(A+B)

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon