Q.

 Column -I Column -II
aThe maximum value of {cos(2A+θ)+cos(2B+θ)} is
(where A, B are constants)
p2sin (A + B)
bThe maximum value of {cos2A+cos2B} is
(where (A + B) is constant and A,B(0,π/2))
q2sec (A + B)
cThe minimum value of {sec2A+sec2B} is 
(where (A + B) is constant and A,B(0,π/4))
r2cos (A + B)
dThe minimum value of {tanθ+cotθ2cos2(A+B)} is
(where A, B are constants and θ(0,π/2))
s2cos (A – B)

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

a-q,b-r,c-s,d-p

b

a-q,b-s,c-r,d-p

c

a-s,b-r,c-q,d-p

d

a-p,b-r,c-s,d-q

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

a)
{cos(2A+θ)+cos(2B+θ)}=2cos(AB)cos(A+B+θ)
Maximum value is 2cos(A–B) when cos(A+B+θ)=1
b)
{cos2A+cos2B}=2cos(A+B)cos(AB)
Maximum value is 2cos(A–B) when cos(A+B) =1

c)For y=secx,x(0,π/2) , tangent drawn to it at
any point lies completely below the graph of y=secx;
thus, sec2A+sec2B2sec(A+B)
or sec2A+sec2Bsec(A+B)
Hence, the minimum value is 2sec(A+B).
d)
{tanθ+cotθ2cos2(A+B)}=(tanθcotθ)2+22cos2(A+B)=(tanθcotθ)2+4sin2(A+B)
Minimum value occurs when tanθ=cotθ and
minimum value is 4sin2(A+B)=2sin(A+B)

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon