Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Column A

 

Column B 

 

1Let f(x)=x2+10x20. The last digit of the sum of all  22024 solutions to the equation f(f((x)))=2, where there are 2024 compositions of  f.A

4

2The number of irrational roots x  satisfying x9+98x6+2764x3x+219512=0.B

3

3If  f(x) is a monic quartic polynomial such that  f(1)=1f(1)=1 , f(2)=3 , and  f(2)=1, find   f(0).C

2

4For x  a real number, let f(x)=0  if x<1  and f(x)=2x2 if  x1. The number of real solutions are there to the equation f(f(f(f(x))))=x?D

0

Note: A monic polynomial is a polynomial whose leading coefficient (the coefficient of the highest power of 𝑥 is 1.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1-D, 2-D, 3-A, 4-C

b

1-A, 2-C, 3-A, 4-C

c

1-D, 2-C, 3-A, 4-C

d

1-D, 2-C, 3-D, 4-A

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

1.Solution:
Define g(x)=f(f(...(x)...)) .
First, we    
calculate:   f(10x)=(10x)2+10(10x)20=100+20xx2+10010x20=x2+10x20=f(x)
     This implies that g(10x)=g(x).  Hence, if  g(x)=2, then  g(10x)=2.
We can also calculate  f(5): f(5)=52+10.520=25+5020=5
Therefore,  g(5)=52.
Given thatg(x)=2,  the possible solutions can be grouped into pairs:
(x1,10x1),(x2,10x2),...
Each pair sums to 10, and there are  22023 pairs. Therefore, the sum of all solutions is: 1022023=1022023.
The last digit of 1022023  is determined by the last digit of 10, which is 0.
Thus, the last digit of the sum of all solutions is:0
2.Solution:
Note that we can rewrite the given equation as: 3x38=x3+38.
Furthermore, the functions of  x  on either side are inverses of each other and increasing. Let  f(x)=3x38.Suppose that f(x)=y=f1(x) . Then, f(y)=x .
However, if x<y , we have f(x)>f(y), contradicting the fact that f  is increasing, and similarly, if y<x , we have f(x)<f(y) , again a contradiction. Therefore, if  f(x)=f1(x) and both are increasing functions in x , we require f(x)=x.
This gives the cubic equation:  
                        x3x+38=0                                     
Solving this cubic equation, we have:
                     (x12)(x2+12x34)=0                            
Thus, the solutions are:
                                    x12,x=1±134               
These are three distinct real roots.
Therefore, the number of distinct real roots is: 3
3.Solution:
The given data tells us that the roots of  f(x)+x2 are -1, 1, 2, and -2. Since  f is monic and quartic, we can write:
                      f(x)+x2=(x+1)(x1)(x2)(x+2)                        
Therefore:
        f(x)=(x+1)(x1)(x2)(x+2)x2                                    
We need to find f(0) :
                          f(0)=(0+1)(01)(02)(0+2)02              
Calculating this:
             f(0)=(1)(1)(2)(200=1(1)(2)2=122=4                
Thus:
f(0)=4                                                    
Therefore, the value of  is f(0) : 4
4.Solution:
There are 2 solutions.
Certainly, 0 and 0 are fixed points of f  and therefore solutions.
1. For  x<0,, there can be no solutions since f  is non-negative-valued.
2. For 0x<1 , we have 0f(x)<x<1 . Since  f(0)=0, iteration only produces values below  .
3. For  1x<2, we have  0f(x)<2. Since f(0)=0 , iteration only produces values below  .
4. For x2 ,  f(x)>x, and iteration produces higher values.
Therefore, the only solutions are the fixed points 0 and 2.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring