Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 Column I Column I
A)If α, β are the roots of ax2 + bx + c = 0 then α3+β3α3+β-3=P)3abcb3c3
B)If α, β are the roots of ax2 +bx + c = 0 then (+b)3+(+b)3=Q)c3a3
C)If α, β are the roots of ax2 +bx + c = 0 then 1α3+1β3=R)b33abca3c3
D)If one root of ax2 + bx +c = 0 is double the
other, then b2/ac = 
S)9/2
 ABCD
1)QRSP
2)QRPS
3)RQSP
4)PQRS

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1

b

2

c

3

d

4

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Given α+β=ba,αβ=ca
A) α3+β31α3+1β3=(αβ)3=ca3 B) 2++c=0α(+b)=c +b=cα(+b)3=α3c3 (+b)3=β3c3(+b)3+(+b)3=α3+β3c3=(α+β)33αβ(α+β)c3=b3a33cabac3b33abca3c3 C) 1α3+1β3=α3+β3(αβ)3=(α+β)33αβ(α+β)(αβ)3=b3a33cabac3a3=b3+3abcc3=3abcb3c3
D) Let α, 2α are roots
α+2α=baα=b3aα(2α)=ca2α2=ca2b29a2=cab2ac=92

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring