Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

 Column I Column II
(i)If fx+1=f3+xx and the value of aa+bfxdx is independent of a, then the value of b can be(A)2
(ii)250π/4tan6xx+tan4xxdx(B)1
(iii)The value of I=14tan1x2tan1x2+tan125+x210x  dx (where [ ] denotes the greatest integer function) then [I] is(C)3
(iv)If I=02x+x+x+....dx (where >0), then [I] is equal to (where [] denotes the greatest integer function)(D)5
  (E)6

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

iC,iiA,iiiD,ivB

b

iA,iiD,iiiB,ivC

c

iB,iiA,iiiD,ivC

d

iD,iiC,iiiA,ivB

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

(i)   fx+1=fx+3orfx=fx+2

Thus, fx is periodic with period 2.

Then, aa+bfxdx is independent of a, for which b is multiple of 2. Thus, b=2,4,6….

(ii)let  I=250π/4tan6xx+tan4xxdx 0<ππ4x=0

=250π/4tan6x+tan4xdx

=250π/4tan4x1+tan2xdx

=250π/4tan4xsec2dx

=25tan5x50π/4

=25×15=5

(iii)let   I=14tan1x2tan1x2+tan125+x210xdx …(i)

On applying  abfxdx=abfa+bxdx , we ger

I=abtan15x2tan15x2+tan1x2dx    …(ii)

Adding Eqs, (i) and (ii), we get

2I=141dx

2I=3

I=32

I=32=1

(iv)Let   y=x+x+x+... 

y=x+yy2yx=0

y=1±1+4x2

y=1+1+4x2   y>1

l=021+1+4x2dx

=x2+1+4x3/232.2×402

=1+27120+112

=1+2612=196

   I=3

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon