Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 Column I Column II
(i)limnr=1nnn+rr2n+r is(A)0
(ii)limnr=1n12rnr2  is(B)π4
(iii)log12log2sinex1ex+1dx is(C)π2
(iv)If 0sinxxdx=π2, then 0sin3xxdx is equal to(D)π3
  (E)π6

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

iC,iiA,iiiD,ivB

b

iB,iiA,iiiD,ivC

c

iD,iiC,iiiA,ivB

d

iA,iiD,iiiB,ivC

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

We have,  Tr=rth  term=nn+rr2n+r

Put   h=1n

So,  Tr=h1+rhr2+rh

=h1+rhrh2+rh

Therefore, required sum

=01dx1+xx2+x

=01dx1+x1+x21

=sec11+x01

=sec12sec11

=π30=π3

(ii)we have,

rth term =12rnr2

=h2rr2h, Where h=1n

=h2rhr2h2

Therefore, required sum is 01dx2xx2

=01dx11x2

=sin11x01

=sin10+sin11

=π2

(iii) we have,  l=log1/2log2sinex1ex+1dx

=log2log2sinex1ex+1dx

Let fx=sinex1ex+1

fx=sinex1ex+1

fx=fx

Hence, is an odd function.

So, I=0

(iv) Given that,  0sinxxdx=π2

0sin3xxdx=034sinx14sin3xxdx

340sinxxdx140sin3xxdx

340sinxxdx140sinuuduletu=3x

=34.π214.π2=π4

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring