Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 Column-I Column-II
A)If the straight line x+y=2p, touch the hyperbola 4x29y2=36,then 2p2  isp)2tan134                                
B)The angle between the two asymptotes of the hyperbola x216y29=1 is:   q)5
C)The length of the latus rectum of the hyperbola xy3x3y+7=0 is l  then  2l is   r)8
D)The number of normals to the hyperbola x2a2y2b2=1  from an external point is   s)4

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

A-s; B-p; C-q; D-r

b

A-q; B-p; C-s; D-r

c

A-r; B-p; C-s; D-q

d

A-q; B-p; C-r; D-s

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

A) Given equation of hyperbola x2a2y2b2=1  
Here, a2=9,  b2=4 
And line  y=x+2P....................(i)
If the line y = mx+ c will touch the hyperbola
x2a2y2b2=1, then  c2=a2m2b2.(ii)
From the eq. (i), we get
 m=1,  c=2p 
Putting these values in eq.(ii)
(2P)2=9(1)42P2=5 
B) We know that angle between two asymptotes of the hyperbola  x2a2y2b2=1 is  2tan1(ba)
Equation to the hyperbola  x216y29=1
Here, a = 4, b = 3
 Required angle =  2tan1(34)
C) Given equation of hyperbola can be rewritten a  x(y3)3(y3)=2(x3)(y3)=2
Let x3=X and y3=Y
Equation of hyperbola is of the form XY=2 (rectangular hyperbola). In rectangular hyperbola a= b, so length of latus rectum  =2b2a=2a (distance between vertices)
And  xy=c22=a22a=2
  Length of latus rectum is 2a = 4

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring