Q.

Column IColumn II
(A) The sum of the factors of 8! which are odd and are the form 3λ+2, λN, is(p) 384
(B) The number of divisors of n=27. 35. 53 which are the form 4λ+1, λN, is(q) 240
(C) Total number of divisors of n=25. 34. 510.74 which are the form 4λ+2, λ1, is(r) 11
(D) Total number of divisors of n=35.57.79 which are the form 4λ+1, λ0, is(s) 40

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

(A) q; (B)r ; (C)p; (D)s

b

(A) r; (B)s; (C)p; (D)q

c

(A) s; (B)r ; (C)p; (D)q

d

(A) p; (B)q ; (C)s; (D)r

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

(A) Here, 8!=27. 32. 51.71

So, the factors may be 1,5,7,35 of which 5 and 35 are of the form 3λ+2.

Sum is 40.

(B) Number of odd numbers =(5+1)(3+1)=24

Required number =12, but 1 is included.

 Required number of numbers =12-1=11 of the form 4λ+1

(C) Here, 4λ+2= 2(2λ+1)

 Total divisors 1.5.11.7-1=384

[ one is subtracted because there will be case when selected powers 3,5 and 7 are zero]

(D) Here, any positive integer power of 5 will be in the form 4λ+1 when even powers of 3 and 7 will be in the form of 4λ+1 and odd powers of 3 and 7 will be in the form of 4λ-1.

 Required divisors =8(3.5+3.5)=240.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon