Q.

Consider a regular heptagon  A1A2A3A4A5A6A7  inscribed in a unit circle.
Let  p1=(A1A2)(A1A3)(A1A4)(A1A5)(A1A6)(A1A7),
p2=(A2A3)(A2A4)(A2A5)(A2A6)(A2A7),

p3=(A3A4)(A3A5)(A3A6)(A3A7),

p4=(A4A5)(A4A6)(A4A7),

p5=(A5A6)(A5A7) and p6=A6A7 where AiAj is length of the segment joining  Ai  and  Aj then value of product  (p1p2p3p4p5p6)27 is 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 7.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Let vertices  A1,A2,....A7 are 7th  roots of unity. Let A1(1),A2(α),A3(α2),A4(α3)

A5=(α4)=α3¯,A6=(α5)=α2¯,A7=(α6)=α¯ (1α)(1α2)(1α3)(1α4)(1α5)(1α6)=7 (|1α||1α2||1α3|)2=7 p1=(A1A2)(A1A3)(A1A4)(A1A5)(A1A6)(A1A7) =(|1α||1α2||1α3|)2=(7)2

Similarly,p2=|1α||1α2||1α3||1α2| 7(|1α3||1a2|) p3=7(|1α2|) p4=7,p5=|1α||1α2|  and  p6=|1α| p1.p2.p3.p4.p5.p6=(7)7

 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Consider a regular heptagon  A1A2A3A4A5A6A7  inscribed in a unit circle.Let  p1=(A1A2)(A1A3)(A1A4)(A1A5)(A1A6)(A1A7),p2=(A2A3)(A2A4)(A2A5)(A2A6)(A2A7),p3=(A3A4)(A3A5)(A3A6)(A3A7),p4=(A4A5)(A4A6)(A4A7),p5=(A5A6)(A5A7) and p6=A6A7 where AiAj is length of the segment joining  Ai  and  Aj then value of product  (p1p2p3p4p5p6)27 is